A Generalist Neural Algorithmic Learner

  • A Generalist Neural Algorithmic Learner [18.4]
    我々は、幅広いアルゴリズムを実行することを学習できる単一のグラフニューラルネットワークプロセッサを構築している。 マルチタスク方式でアルゴリズムを効果的に学習できることを示す。
    論文  参考訳(メタデータ)   (Thu, 22 Sep 2022 16:41:33 GMT)
    • 古典的なアルゴリズム( sorting, searching, dynamic programming, path-finding, geometry)を学習可能なgeneralist model(Triplet-GMPNN)を提案、CLRSベンチマーク(下記)の結果を改善している。
  • The CLRS Algorithmic Reasoning Benchmark [28.8]
    アルゴリズムの学習表現は機械学習の新たな領域であり、ニューラルネットワークから古典的なアルゴリズムで概念をブリッジしようとしている。 本稿では,従来のアルゴリズムを包括するCLRS Algorithmic Reasoning Benchmarkを提案する。 我々のベンチマークは、ソート、探索、動的プログラミング、グラフアルゴリズム、文字列アルゴリズム、幾何アルゴリズムなど、様々なアルゴリズムの推論手順にまたがっている。
    論文  参考訳(メタデータ)   (Tue, 31 May 2022 09:56:44 GMT)
  • deepmind/clrs (github.com)

TempoWiC

  • TempoWiC: An Evaluation Benchmark for Detecting Meaning Shift in Social Media [17.8]
    我々は、ソーシャルメディアベースの意味変化の研究を加速するための新しいベンチマークであるTempoWiCを紹介する。 この結果から,ソーシャルメディアに特化した最近リリースされた言語モデルであっても,TempoWiCは難しいベンチマークであることがわかった。
    論文  参考訳(メタデータ)   (Fri, 16 Sep 2022 16:54:46 GMT)
    • SNSにおける意味の変化も考慮したベンチマークの提案。super GLUEに取り入れられているWiC同様、単語の意味が同じかに注目したものになっている。
    • リポジトリはcardiffnlp/TempoWiC (github.com)

Prompting for a conversation: How to control a dialog model? 

  • Prompting for a conversation: How to control a dialog model? [9.3]
    ダイアログモデルは大量のテキストでトレーニングされるが、その応答はダイアログエージェントの望ましいスコープとスタイルに制限される必要がある。 前者を達成するために使用されるデータセットには後者と互換性のない言語が含まれているため、事前訓練されたダイアログモデルは、より小さなキュレートされたデータセットで微調整される。 本稿では,上記のトレードオフを緩和できるかどうかを検討する。
    論文  参考訳(メタデータ)   (Thu, 22 Sep 2022 14:59:55 GMT)
    • 会話モデルに対するfine tuningの副作用とその緩和の話題。ケンブリッジ大学とAppleの共著で著者へのリファレンスがかわいい。
    • リファレンスはおいておいて、dyamic-promptingという名称でテキストの多様性を生み出す能力を壊さずに特定タスクへの適応をあげている。