MathCoder

  • MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning [53.0]
    本稿では,オープンソース言語モデルを微調整する手法を提案する。 本稿では,問題のある新しい,高品質なデータセットを生成する手法とそのコードベースソリューションを提案する。 このアプローチは、問題の解決にコードベースのソリューションを生成することができるモデルのファミリーであるMathCoderモデルを生成する。
    論文  参考訳(メタデータ)   (Thu, 5 Oct 2023 17:52:09 GMT)
  • 数学の問題を解くためにコードを用いるアプローチ、オープンなLLMをSFTするアプローチ。
  • 大きな改変を行うにはやはりSFTで、オープンなモデルは重要だなという印象。
  • リポジトリはGitHub – mathllm/MathCoder: Family of LLMs for mathematical reasoning.

ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving

  • ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving [170.8]
    ToRAは、難解な数学的問題を解決するために設計されたツール統合推論エージェントのシリーズである。 ToRAモデルは、あらゆるスケールにわたる10の数学的推論データセットで、オープンソースモデルよりも大幅に優れています。 TORA-34Bは、MATHで50%を超える精度を達成する最初のオープンソースモデルであり、GPT-4のCoTよりも大幅に優れている。
    論文  参考訳(メタデータ)   (Fri, 29 Sep 2023 17:59:38 GMT)
  •  Tool-integrated Reasoning Agentを実現するモデルの提案。Promptを工夫するアプローチではなくLlama-2やCodeLLaMAをfine tuningしている。結果、比較的小規模のモデルでも高い性能を達成とのこと。
  • リポジトリはGitHub – microsoft/ToRA: ToRA is a series of Tool-integrated Reasoning LLM Agents designed to solve challenging mathematical reasoning problems by interacting with tools.

All Languages Matter: On the Multilingual Safety of Large Language Models

  • All Languages Matter: On the Multilingual Safety of Large Language Models [101.3]
    我々は、大規模言語モデル(LLM)のための最初の多言語安全ベンチマークを構築した。 XSafetyは、複数の言語ファミリーにまたがる10言語にわたる14種類の一般的な安全問題をカバーしている。 本稿では,ChatGPTの多言語安全性向上のための簡易かつ効果的なプロンプト手法を提案する。
    論文  参考訳(メタデータ)   (Mon, 2 Oct 2023 05:23:34 GMT)
  • LLMへの攻撃に対するベンチマーク、「Our empirical studies show that these LLMs perform much unsafer in non-English languages than in English, calling for the development of safety alignment beyond English.」とのことでLLMが広く使われるにつれ多言語の考慮はとても重要になりそう。
  • リポジトリはGitHub – Jarviswang94/Multilingual_safety_benchmark: Multilingual safety benchmark for Large Language Models