Search-o1: Agentic Search-Enhanced Large Reasoning Models

  • Search-o1: Agentic Search-Enhanced Large Reasoning Models [24.2]
    OpenAI-o1のような大きな推論モデル(LRM)は、大規模な強化学習を通じて、大きなステップワイズ推論能力を実証している。 エージェント検索拡張生成(RAG)機構とReason-in-Documentsモジュールを併用し,LRMを強化するフレームワークである textbfSearch-o1 を紹介する。
    論文  参考訳(メタデータ)   (Thu, 09 Jan 2025 16:48:17 GMT)
  • RAG + Large Rrasoning Modelなフレームワークの提案。Agenticなアプローチに見えなくもないが、「(a) Direct reasoning without retrieval often results in inaccuracies due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach improves knowledge access but usually returns lengthy, redundant documents, disrupting coherent reasoning. (c) Our Search-o1 integrates concise and accurate retrieved knowledge seamlessly into the reasoning process, enabling precise and coherent problem-solving.」とReason-in-Documentsを用いLRMと別の処理として推論の流れに沿った情報を選択・要約してLRMに組み込む有効性を主張している。
  • リポジトリはSearch-o1: Agentic Search-Enhanced Large Reasoning Models

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です