コンテンツへスキップ
- Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance [211.1]
本研究は,本質的セキュリティ,デリバティブ・セキュリティ,社会倫理の3つの柱を中心に構築された,技術的・社会的次元を統合した包括的枠組みを提案する。 我々は,(1)防衛が進化する脅威に対して失敗する一般化ギャップ,(2)現実世界のリスクを無視する不適切な評価プロトコル,(3)矛盾する監視につながる断片的な規制,の3つの課題を特定する。 私たちのフレームワークは、研究者、エンジニア、政策立案者に対して、堅牢でセキュアなだけでなく、倫理的に整合性があり、公的な信頼に値するAIシステムを開発するための実用的なガイダンスを提供します。
論文 参考訳(メタデータ) (Tue, 12 Aug 2025 09:42:56 GMT)
- 「This paper offers a comprehensive overview of AI governance, addressing challenges across intrinsic security, derivative security, and social ethics.」とガバナンスについて概要がまとまった論文。リポジトリもあって良い感じ(だが、リポジトリの論文リストは更新中?)
- リポジトリはGitHub – ZTianle/Awesome-AI-SG: Awesome papers and resources related to the AI Safety and Governance
- Beyond “Not Novel Enough”: Enriching Scholarly Critique with LLM-Assisted Feedback [81.0]
本稿では,3段階を通して専門家レビューアの動作をモデル化する,自動ノベルティ評価のための構造化アプローチを提案する。 本手法は,人文のノベルティレビューを大規模に分析した結果から得られたものである。 182 ICLR 2025 の提出で評価されたこの手法は、人間の推論と86.5%の一致と、新規性の結論に関する75.3%の合意を達成している。
論文 参考訳(メタデータ) (Thu, 14 Aug 2025 16:18:37 GMT)
- 論文等の新規性を評価するフレームワークの提案、「document processing and content extraction, related work retrieval and ranking, and structured novelty assessment.」という3ステージ構成。
- リポジトリはBeyond “Not Novel Enough”: Enriching Scholarly Critique with LLM-Assisted Feedback
- UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding [16.9]
トレーニングと推論の両方においてGUIエージェントを強化するUI-AGILEを導入する。 トレーニングのために,スーパービジョン・ファイン・チューニング(SFT)プロセスの一連の改善を提案する。 推測のために,高解像度ディスプレイのグラウンド化精度を劇的に向上させるために,選択による分解グラウンド化を提案する。
論文 参考訳(メタデータ) (Sat, 09 Aug 2025 17:51:27 GMT)
- GUIエージェントの性能に大きく影響するグラウンディング能力を強化するフレームワークの提案。「UI-AGILE enhances GUI agents through improved training with a Continuous Reward function, Simple Thinking reward, and Cropping-based Resampling, and inference with Decomposed Grounding with Selection.」とのこと。
- リポジトリはGitHub – KDEGroup/UI-AGILE
- DocR1: Evidence Page-Guided GRPO for Multi-Page Document Understanding [97.4]
本稿では,新しいRLフレームワークであるEvidence Page-Guided GRPOで学習したMLLMであるDocR1を紹介する。 EviGRPOには、粗大な推論戦略を促進するエビデンス対応報酬機構が組み込まれている。 我々は,DocR1が複数ページのタスクに対して最先端のパフォーマンスを達成し,シングルページのベンチマークにおいて強い結果を維持していることを示す。
論文 参考訳(メタデータ) (Sun, 10 Aug 2025 12:03:45 GMT)
- 多くのページがあるドキュメント読解のためのフレームワークの提案。
- 「When engaging in multi-page reading comprehension, humans typically begin by identifying the pages likely to contain the answer, and then focus on locating the specific regions that correspond to the question and answer within those pages. Inspired by this “coarse-to-fine” reading strategy, EviGRPO mimics the human approach by first selecting a small set of potentially relevant pages at a coarse level, followed by fine-grained reasoning over the selected content.」とのことだが、このようなドメイン(タスク)特化のアプローチはいまだ有効なんだろうか。。
- LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models [51.6]
静的ベンチマークにおけるLLM(Large Language Models)の既存の評価は、データの汚染やリーダーボードのオーバーフィッティングに弱い。 LLMの動的評価のためのフレームワークであるLLMEval-3を紹介する。 LLEval-3は、220kの卒業生レベルの質問からなるプロプライエタリなバンク上に構築されており、評価実行毎に未確認のテストセットを動的にサンプリングする。
論文 参考訳(メタデータ) (Thu, 07 Aug 2025 14:46:30 GMT)
- 「LLMEval-3 is built on a proprietary bank of 220k graduate-level ques- tions, from which it dynamically samples unseen test sets for each evaluation run.」というベンチマーク。今までにも指摘されてきたことではあるが公開ベンチマークはleakの影響が大きく本論文にもそのような指摘がある。
- リポジトリはllmeval/LLMEval-3: 中文大语言模型评测第三期
- TiMoE: Time-Aware Mixture of Language Experts [30.8]
大規模言語モデル(LLM)は通常、Webの固定スナップショットに基づいてトレーニングされる。 我々は,2013-2024コーパスの2年スライスを分割し,TiMoEで組み合わせることで,GPTスタイルのエキスパートセットをスクラッチから事前学習することで,この問題に対処する。 推論時にTiMoEは、クエリタイムスタンプ後にトレーニングウィンドウが終了するすべての専門家をマスクし、残りのログ確率を共有スペースにマージする。
論文 参考訳(メタデータ) (Tue, 12 Aug 2025 10:36:36 GMT)
- 「TiMoE demonstrates that partitioning pre-training data into strict time slices and blending the resulting GPT-2 experts through a causal, timestamp-aware router yields language models that stay chronologically grounded without a heavy accuracy penalty. By masking out any expert trained on data newer than the query year, TiMoE eliminates future-knowledge leakage while letting earlier specialists cooperate, cutting temporally inconsistent answers on the new 10 k-question TSQA benchmark by roughly 15%and delivering steadier accuracy across years.」というアプローチの時間情報の取り扱い。time-specific expertsを扱う面白いフレームワーク。とはいえパラメータ効率的にどうなんだろうと思わなくはない。
- リポジトリはhttps://github.com/epfml/TiMoEとのこと。
- Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges [29.3]
Web3テクノロジとAIエージェントの収束は、分散化されたエコシステムを再形成する、急速に進化するフロンティアを表している。 本稿では, ランドスケープ, 経済, ガバナンス, セキュリティ, 信頼メカニズムの5つの重要な側面について, Web3 と AI エージェントの交わりについて, 初めてかつ最も包括的な分析を行った。
論文 参考訳(メタデータ) (Mon, 04 Aug 2025 15:44:58 GMT)
- 「This paper presents the first comprehensive systematic analysis of Web3-AI agent integration, examining 133 active projects with $6.9 billion collective market capitalization to reveal how AI agents fundamentally reshape decentralized ecosystems across the landscape, finance, governance, security, and trust dimensions.」というサーベイ
- Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation [117.5]
Open X-Embodiment (OXE)のような大規模データセットでトレーニングされた汎用的なロボットポリシーは、幅広いタスクにわたって強力なパフォーマンスを示している。 彼らはしばしば、トレーニングデータの分布を超えて一般化するのに苦労する。 我々は,ショートカット学習を一般化の鍵となる障害として認識する。
論文 参考訳(メタデータ) (Fri, 08 Aug 2025 16:14:01 GMT)
- 「Our analysis reveals that large-scale robot datasets like OXE suffer from limited sub-dataset diversity and severe fragmentation, a problem that extends even within individual sub-datasets. This structure inherently promotes shortcut learning, meaning that simply adding more similarly-fragmented data can be detrimental to generalization.」とのこと。汎用的なモデル構築は難しい。
- プロジェクトサイトはShortcut Learning in GRPs