GNNに対するXAIのサーベイ

  • Explainability in Graph Neural Networks: An Experimental Survey [12.4]
    グラフ表現学習のためのグラフニューラルネットワーク(GNN)が広く開発されている。 GNNは、その基盤となるメカニズムを理解できないため、ブラックボックスの問題に悩まされる。 GNNによる意思決定を説明するために、いくつかのGNN説明可能性法が提案されている。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 17 Mar 2022 11:25:41 GMT)
    • Graph Neural Networkを対象にしたXAIのサーベイ。

A Roadmap for Big Model

  • A Roadmap for Big Model [390.6]
    BMの全般的な進歩を整理し、フォローアップ研究を導く研究成果の欠如がある。 本稿では,BM技術そのものだけでなく,BM訓練やBM応用の前提条件についても述べる。 データ,知識,コンピュータシステム,並列学習システム,言語モデル,ビジョンモデル,マルチモーダルモデル,理論と解釈可能性,常識推論,信頼性とセキュリティ,ガバナンス,評価,機械翻訳,テキスト生成,対話,タンパク質研究の4分野に16のBM関連トピックを紹介する。
    論文  参考訳(メタデータ)   (Sat, 26 Mar 2022 15:38:00 GMT)
    • 様々な分野での大規模モデルに関する包括的な論文(サーベイ)。100人近くの著者、本文140ページ、引用数1637と大作。全部読むのは大変だが、興味のある分野のみの参照でもとても参考になるものだと思う。

BigDetection: Object detection用大規模データセット

Authorship-Deobfuscation

  • A Girl Has A Name, And It’s … Adversarial Authorship Attribution for Deobfuscation [9.6]
    既存のオーサシップ難読化アプローチは、敵の脅威モデルを考慮していない。 このギャップを埋めるために, 難読化に対する敵対的著作者帰属の問題を検討する。 その結果,既存の難読化者の有効性を20~30%から5~10%に低下させることができた。 私たちの結果は、難読化に抵抗するより強固な難読化アプローチの必要性を強調する
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 16:26:09 GMT)

Cross-Lingual Summarizationのサーベイ

  • A Survey on Cross-Lingual Summarization [43.9]
    言語間の要約は、異なる言語における文書の1つの言語で要約を生成するタスクである。 グローバル化の背景から、この課題は計算言語学コミュニティから注目を集めている。 この分野におけるデータセット、アプローチ、課題に関する最初の体系的批判的レビューを提示する。
    論文  参考訳(メタデータ)   (Wed, 23 Mar 2022 16:24:21 GMT)
    • クロスリンガル要約のサーベイ。日本語にとっては極めて重要なタスクだと思う。
      • 英語のドキュメントに対して日本語の抄訳がある事例は多く、データセットを作りやすいのではないかと思ったりもする。。。

IAM: 議論マイニングのための包括的な大規模なデータセット

  • IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks [59.5]
    本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。 データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。 議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 24 Mar 2022 03:27:52 GMT)
    • 議論マイニングのため、 Claim Extraction with Stance Classification (CESC) と Claim-Evidence Pair Extraction (CEPE)タスクを設定、データセットを作成、ベースラインを提供
      • IAM = Integrated Argument Mining ?

小さなデータで効率的に学習するためのDataset distillation

  • Dataset Distillation by Matching Training Trajectories [75.9]
    そこで本研究では,実データと同じような状態にネットワークを誘導するために,蒸留データを最適化する新しい定式化を提案する。 ネットワークが与えられたら、蒸留データを何回か繰り返して訓練し、合成訓練されたパラメータと実データで訓練されたパラメータとの距離に関して蒸留データを最適化する。 本手法は既存の手法よりも優れており,高解像度の視覚データを蒸留することができる。
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 17:58:59 GMT)

WuDaoMM: 大規模な画像・テキストのマルチモーダルデータセット

  • WuDaoMM: A large-scale Multi-Modal Dataset for Pre-training models [2.6]
    我々はWuDaoMMという大規模マルチモーダルコーパスを導入し、6億5000万以上の画像テキストペアを網羅した。 画像とキャプションの相関が弱い複数のWebページから、約6億のデータを収集する。 具体的には、画像とキャプションの相関が弱い複数のWebページから約6億のデータを収集し、他の5000万の強い関連画像テキストペアを高品質なグラフィックWebサイトから収集する。 また、WuDaoMMのベースバージョンを500万の強相関画像テキストペアでリリースし、一般的なクロスモーダルモデル事前トレーニングをサポートするのに十分です。
    論文  参考訳(メタデータ)  参考訳(全文)  (Tue, 22 Mar 2022 06:12:20 GMT)
    • テキスト・画像の大規模データセット。研究目的にのみ利用可能。
    • プロジェクトサイトはresource (wudaoai.cn)

Make-A-Scene: 制御可能なテキストtoイメージ生成

  • Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.7]
    近年のテキスト・ツー・イメージ生成手法は生成した画像の忠実度とテキスト関連性を漸進的に改善しているが、いくつかの重要なギャップは未解決のままである。 これらのギャップに対処する新しいテキスト・ツー・イメージ手法を提案する。 (i)シーン形式でテキストを補完する簡単な制御機構を可能にすること。 (ii)主要画像領域(顔及び突出物)にドメイン固有の知識を取り入れて、トークン化プロセスを大幅に改善する要素を導入すること。 (iii)変圧器の用途に分類器フリーのガイダンスを適用すること。 本モデルでは,512×512ピクセルの解像度で高忠実度画像を生成する能力を解放し,視覚的品質を著しく向上する。
    論文  参考訳(メタデータ)   (Thu, 24 Mar 2022 15:44:50 GMT)
    • テキストからの画像生成時にセグメンテーション情報を与えることで生成される結果を制御可能なモデルの提案。どのようなものかはThe Little Red Boat Story (Make-A-Scene) – YouTubeの2:40以降を見るのが分かりやすい。

ポッドキャスト書き起こしの要約

  • Towards Abstractive Grounded Summarization of Podcast Transcripts [33.3]
    ポッドキャストの書き起こしの要約は、コンテンツ提供者と消費者の両方にとって実用的な利益である。 これは、コンシューマーがポッドキャストを聴くかどうかを素早く判断し、要約を書くためのコンテンツプロバイダの負荷を減らすのに役立つ。 しかし、ポッドキャストの要約は、入力に関する事実上の矛盾を含む重大な課題に直面している。
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 02:44:39 GMT)