MoCo: A One-Stop Shop for Model Collaboration Research

  • MoCo: A One-Stop Shop for Model Collaboration Research [132.5]
    MoCo: 大規模なモデルコラボレーションアルゴリズムの実行、ベンチマーク、比較を行う、ワンストップPythonライブラリ。 MoCoは26のモデルコラボレーションメソッドを備えており、さまざまなレベルのクロスモデル情報交換が可能である。 MoCoによる大規模な実験は、ほとんどのコラボレーション戦略が、コラボレーションなしでモデルより優れていることを示している。 私たちは、MoCoをオープンでモジュール化され、分散化され、協力的なAIの未来を探求するための、貴重なツールキットとして想定しています。
    論文  参考訳(メタデータ)   (Thu, 29 Jan 2026 04:36:52 GMT)
  • 「MOCO features a wide range of 26 model collaboration algorithms, spanning four levels of collaboration defined by the level of information exchange: API-level (e g , routing (Ong et al , 2025) and switching (Feng et al , 2025d; Huang et al , 2026)), text-level (e g , debate (Du et al , 2023) and cooperate (Yu et al , 2025)), logit-level (e g , collective decoding (Liu et al , 2024a)), and weight- level (e g , merging (Yadav et al , 2024) and parameter- space search (Feng et al , 2025c)).」とマルチエージェントシステム導入のためのフレームワーク。「Extensive experiments with MOCO demonstrate that model collaboration is a promising path towards modular and com- positional AI systems. Model collaboration outperforms individual models in 61.0% of cases across diverse (model, data) settings, with the most successful algorithms outperforming in almost every evaluation domain by up to 25.8%.」と効果も確認している。
  • リポジトリはGitHub – BunsenFeng/model_collaboration

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です