コンテンツへスキップ
- CAISE: Conversational Agent for Image Search and Editing [109.6]
画像検索・編集のための自動会話エージェント(CAISE)のデータセットを提案する。 私たちの知る限り、これは対話型画像検索とアノテーションの編集を提供する最初のデータセットです。 アシスタントアノテーションがツールで実行する機能は実行可能なコマンドとして記録される。
論文 参考訳(メタデータ) (Thu, 24 Feb 2022 00:55:52 GMT)- 画像検索、編集を対話で行うモデル構築のためのデータセットを提案。ベースラインモデルも構築しているが、人との差は大きい。
- Adobe Researchの論文で今後このようなインタフェースに期待大。
- Survey on Large Scale Neural Network Training [48.4]
現代のディープニューラルネットワーク(DNN)は、トレーニング中にウェイト、アクティベーション、その他の中間テンソルを保存するためにかなりのメモリを必要とする。 この調査は、より効率的なDNNトレーニングを可能にするアプローチの体系的な概要を提供する。
論文 参考訳(メタデータ) (Mon, 21 Feb 2022 18:48:02 GMT)- 大規模ニューラルネットをいかに学習するかに関するサーベイ。Single GPU、マルチ GPU双方の内容を扱っている。8ページと短いが様々なアプローチとトレードオフが整理されていて面白い。
- VLP: A Survey on Vision-Language Pre-training [24.1]
事前学習モデルの出現は、コンピュータビジョン (CV) や自然言語処理 (NLP) のような一様場を新しい時代にもたらした。 本稿では、画像テキストやビデオテキストの事前学習など、視覚言語事前学習の最近の進歩と新たなフロンティアについて調査する。
論文 参考訳(メタデータ) (Mon, 21 Feb 2022 02:58:34 GMT)- image-text、video-textに対するVLP(VisionLanguage Pre-training)に関するサーベイ。8ページと短いが参考になる。6ページの表から非常の多くの手法があることが分かる。。。
- ArgSciChat: A Dataset for Argumentative Dialogues on Scientific Papers [61.8]
学術論文のドメインエキスパートとして科学者間の対話を収集する新しい枠組みを導入する。 我々のフレームワークは、科学者が論文を対話の根拠として提示し、論文のタイトルを気に入った対話に参加することを可能にする。新しい議論的対話データセットArgSciChatの収集にフレームワークを使用します。 41の対話から収集された498のメッセージと20の科学論文からなる。
論文 参考訳(メタデータ) (Mon, 14 Feb 2022 13:27:19 GMT)
- A Contrastive Framework for Neural Text Generation [46.8]
テキスト生成は多くの自然言語処理アプリケーションにおいて非常に重要である。 しかし、ニューラルネットワークモデルの最大化に基づく復号法(ビーム探索など)は、しばしば不自然であり、望ましくない繰り返しを含んでいる。モデル表現空間を校正するための対照的な学習目標であるSimCTGと,生成したテキストのコヒーレンスを維持しつつ多様性を高めるためのデコード手法であるコントラスト検索を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Sun, 13 Feb 2022 21:46:14 GMT)
- SpeechPainter: Text-conditioned Speech Inpainting [12.0]
本稿では,音声サンプルの最大1秒間を補助的なテキスト入力を利用して埋め込むモデルであるSpeechPainterを提案する。 本研究では, 話者識別, 韻律, 記録環境条件を維持しながら, 適切な内容で音声を表現できることを実証する。
論文 参考訳(メタデータ) (Tue, 15 Feb 2022 09:33:30 GMT)
- Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments [42.8]
本稿では,スケーリング法則がモデル開発の促進に有効かどうかを考察する。 スケーリング法則は、いくつかのNLPタスクにおいて微調整時に現れる。 スケーリング法則が存在するタスクに対しては、より大きなモデルのパフォーマンスを予測するために使用することができる。
論文 参考訳(メタデータ) (Sun, 13 Feb 2022 19:13:00 GMT)- SST-2、QNLI、MRPC、RACE、SQuAD 1.1、SQuAD 2.0、BoolQ、CoLA 、MNLIに対してパラメータ数と性能の関係を調査、Scaling Lawsは大規模化した際のパフォーマンス予測に有用では?との結論
- ネットワークアーキテクチャやデータにもよるんじゃないかとも思いつつ、実験結果は興味深い
- Towards Identifying Social Bias in Dialog Systems: Frame, Datasets, and Benchmarks [95.3]
本稿では,ダイアログの安全性問題に対する社会的バイアス検出に焦点をあてる。 まず,会話における社会的バイアスを現実的に分析する新しいダイアルバイアスフレームを提案する。 中国初の社会バイアスダイアログデータセットであるCDail-Biasデータセットを紹介する。
論文 参考訳(メタデータ) (Wed, 16 Feb 2022 11:59:29 GMT)- 今後ユーザインタフェースとして普及が予想される対話システムにおいて、社内的バイアスの存在が問題視されている。その検出のためのデータセット(中国版)を作成、ベースラインを提供。
- Source Code Summarization with Structural Relative Position Guided Transformer [19.8]
ソースコードの要約は、プログラミング言語の簡潔で明確な自然言語記述を生成することを目的としている。 近年の取り組みは、Transformerなどのニューラルネットワークにコードの構文構造を組み込むことに重点を置いている。 SCRIPTと呼ばれる構造相対位置案内変換器を提案する。
論文 参考訳(メタデータ) (Mon, 14 Feb 2022 07:34:33 GMT)- ソースコードの要約(ソースコードに対して短い自然言語の記述を生成)にTransformer型の構造を適用、優れた性能を達成。
- (略称は無理やり感があるが)有用な研究、様々なアプローチがあり興味深い。
- リポジトリはGitHub – GoneZ5/SCRIPT
- ZeroGen: Efficient Zero-shot Learning via Dataset Generation [28.5]
柔軟で効率的なゼロショート学習手法であるZeroGenについて検討する。 ゼロショットタスクが与えられた場合、まず、教師なしの方法で PLM を用いて、スクラッチからデータセットを生成する。 テキスト分類、質問応答、自然言語推論といった異なるNLPタスクの実験と分析は、ZeroGenの有効性を示している。
論文 参考訳(メタデータ) (Wed, 16 Feb 2022 08:18:02 GMT)- 大規模生成モデルから知識を引き出し(データセットを作成し)それよりも小さなモデルで再現するアプローチの論文。Text classificationの結果は良いがSQuADなど教師有りとのパフォーマンス差があるタスクもあるとのこと。
- このアプローチが有望であるとの報告は多いが、上記ギャップの理由が知りたいところ。