- TASKOGRAPHY: Evaluating robot task planning over large 3D scene graphs [33.3]
TASKOGRAPHYは、3DSGを使った最初の大規模ロボットタスク計画ベンチマークである。 タスク条件付き3DSGスカラー化手法であるSCRUBを提案する。 また,学習ベースプランナが3DSG構造を活用できる手法であるSEEKを提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 11 Jul 2022 16:51:44 GMT)- ロボットタスク計画ベンチマーク。対象はRearrangement(k)、Courier(n, k)、Lifted Rearrangement(k)/Courier(n, k)
- プロジェクトサイトはTaskography – Evaluating robot task planning over large 3D scene graphs | Taskography
タグ: 行動計画
Inner Monologue: 大規模言語モデルの計画への利用
- Inner Monologue: Embodied Reasoning through Planning with Language Models [81.1]
大規模言語モデル(LLM)は自然言語処理以外の領域に適用できる。 具体化された環境でのLLMの計画には、何をすべきかだけでなく、どのように、いつ行うべきかを考える必要がある。 環境フィードバックを活用することで、LLMはロボット制御シナリオにおいてよりリッチな処理と計画を行うことができる内部モノローグを形成することができる。
論文 参考訳(メタデータ) (Tue, 12 Jul 2022 15:20:48 GMT)- 大規模言語モデルが自然言語処理以外の領域、ここでは計画に利用できるとの報告。Language Models as Zero-Shot Planner: LMはタスクをステップに落とせるか? – arXiv最新論文の紹介 (devneko.jp)などLLMのパワーはすごい
- プロジェクトサイトはInner Monologue
ロボットへの自然言語によるフィードバック
- Correcting Robot Plans with Natural Language Feedback [88.9]
既存の補正方法(例えばジョイスティックの使用やエンドエフェクターの直接操作など)は完全な遠隔操作やリアルタイム操作を必要とする。 本稿では,ロボット訂正のための表現的かつ柔軟なツールとして自然言語を探索する。これらの変換により、ユーザは目標を正し、ロボットの動きを更新し、計画上のエラーから回復できる。 本手法により,シミュレーション環境や実環境において,複数の制約を合成し,未知のシーン,オブジェクト,文に一般化することが可能となる。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 11 Apr 2022 15:22:43 GMT)- 自然言語でロボットにフィードバックするという未来を感じる研究。
Language Models as Zero-Shot Planner: LMはタスクをステップに落とせるか?
- Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [111.3]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。 事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。 本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (Tue, 18 Jan 2022 18:59:45 GMT) - 大規模言語モデルを用いて「歯を磨く」というタスクを「①浴室に行く」「②ドアを開ける」・・・のようにステップに落とせるか?に対する論文。一定の補正を加えることで79%で実行可能となるとのこと。VirtualHome (virtual-home.org)による可視化が面白い。
- プロジェクトサイトはLanguage Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents (wenlong.page)