- Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs [34.2]
大規模言語モデル(LLM)は自己生成応答を補正することができるが、自己補正後の精度の低下も観察されている。 自己訂正能力は、自信(回答を正す自信)と批判(間違った回答を正しいものにする)に分解します。 我々の戦略は両方の能力においてバニラSFTより優れており、自己補正後の精度ははるかに高い。
論文 参考訳(メタデータ) (Fri, 27 Dec 2024 08:09:11 GMT) - Confidence scoreとCriticの分析、および、自己修正能力を高める手法の提案
- 「Confidence prompt/ICL example can lead higer CL and lower CS; critique prompt/ICL example can cause lower CL and higher CS.」(Confidence Level (CL) and Critique Score (CS))とトレードオフの関係にあるとのこと。
- 両者を改善するために「Critique Improvement Tuning (CCT), which can be divided into Confidence Level Improvement Tuning (CLT) and Critique Score Improvement Tuning (CST).」を提案
- リポジトリはGitHub – Zhe-Young/SelfCorrectDecompose: Code for paper “Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs”
タグ: critic
Self-Improvement in Language Models: The Sharpening Mechanism
- Self-Improvement in Language Models: The Sharpening Mechanism [70.9]
言語モデリングにおける最近の研究は、言語モデルが外部からのフィードバックなしにより高いパフォーマンスを達成するために、言語世代を評価し、洗練する自己改善の可能性を高めている。 我々は、レンズを通して自己改善の能力について、新たな視点を提供する。 言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
論文 参考訳(メタデータ) (Mon, 02 Dec 2024 20:24:17 GMT) - 「Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to “sharpen” the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences.」という研究
- 最近よく見るキーワードcritic – arXiv最新論文の紹介にも関連する面白い研究
Self-Generated Critiques Boost Reward Modeling for Language Models
- Self-Generated Critiques Boost Reward Modeling for Language Models [57.6]
Critic-RMは、余分な監督なしに自己生成した批評を使って報酬モデルを改善するフレームワークである。 実験の結果、Critic-RMは標準報酬モデルやLLM審査員と比較して報酬モデリングの精度を3.7%-7.3%改善していることがわかった。
論文 参考訳(メタデータ) (Mon, 25 Nov 2024 18:28:26 GMT) - 「By harnessing LLMs’ ability to generate and refine critiques, Critic-RM implements a novel self-improvement approach that improves both critique quality and reward prediction accuracy.」という結論。
- 自己評価、自己批判を取り入れるアプローチが流行っている感がある。解釈は難しいが、生成と評価・批判は能力として異なりうまく使うことで相互の性能を上げられるということなんだろうか。(WEBには批判・批評データがとても多いからとかだとやや悲しいが、一方でそれで性能が上がるのであれば…という微妙な気持ち)
Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
- Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning [46.4]
Critic-Vはアクター・クライブのパラダイムにインスパイアされたフレームワークで、視覚言語モデルの推論能力を高める。 リアソナーは視覚的およびテキスト的入力に基づいて推論パスを生成し、批判はこれらのパスを洗練するための建設的批評を提供する。 評価の結果,Critic-V フレームワークは GPT-4V を含む既存手法を8つのベンチマークのうち5つで大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (Wed, 27 Nov 2024 10:28:57 GMT)
Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision
- Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.4]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。 まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。 テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (Mon, 25 Nov 2024 17:11:54 GMT) - 「flawed reasoning path construction, critique generation, and data filtering」の3ステージからなるフレームワークAutoMathCritiqueでデータを構築、fine tuningするとともに、「Motivated by the insights of test-time, we introduce the critique model into the actor model’s exploration and learning process, introducing a critique-in-the-loop self-improvement method」を適用して効果を確認。 critique modelの有効性が分かる結果に見える(が、この構築は容易ではないかもしれない)
- リポジトリはAutoMathCritique
SELU: Self-Learning Embodied MLLMs in Unknown Environments
- SELU: Self-Learning Embodied MLLMs in Unknown Environments [35.6]
マルチモーダルな大言語モデル(MLLM)は、強力な視覚的理解と意思決定能力を示している。 本稿では,強化学習におけるアクター批判的自己学習パラダイムに触発された,SELUと呼ばれる新しいアクター批判的自己学習パラダイムを提案する。
論文 参考訳(メタデータ) (Fri, 04 Oct 2024 10:40:11 GMT) - 「We propose a self-learning paradigm for embodied MLLMs, SELU, inspired by the actorcritic paradigm in reinforcement learning, which enables MLLMs to self-adapt to unknown environments.」というSelf-XでEmbodiedというとても未来を感じる研究。
- 環境に対するActorに対してMLLM Criticが評価するという、最近流行りのフレームワークだが、Actor MLLMとClitic MLLMをそれぞれfine tuningしていくことに特徴がある(同じMLLMを使うSELU Oneより優れているとのこと)
LLaVA-Critic: Learning to Evaluate Multimodal Models
- LLaVA-Critic: Learning to Evaluate Multimodal Models [110.1]
本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。 LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (Thu, 03 Oct 2024 17:36:33 GMT) - マルチモーダルなタスクに対しての評価を行うモデルの提案。データ構築もMLLMを多用するアプローチになっていて興味深いが、ライセンス的に大丈夫なんだろうかという若干の不安。
- プロジェクトサイトはLLaVA-OneVision: Easy Visual Task Transfer (llava-vl.github.io)
LLMs assist NLP Researchers: Critique Paper (Meta-)Reviewing
- LLMs assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.5]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。 本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。 私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (Mon, 24 Jun 2024 01:30:22 GMT) - LLMが研究者を支援できるかどうか、レビュワー・メタレビュワーの観点で試行した論文
- 結論として「Our analysis reveals that while LLMs can generate reviews, they often produce Deficient and paper-unspecific segments, lacking the diversity and constructive feedbacks.Additionally, even state-of-the-art LLMs struggle to assess review deficiencies effectively.」
Gemma2, CriticGPT
Googleから公開モデルとしては規模の大きいLLM Gemma2がリリースされた。9Bと27Bの公開。Llama3など競合する公開モデルを超える性能とのこと。テクニカルレポート(gemma-2-report.pdf (storage.googleapis.com))には「The 9 billion and 27 billion parameter models are available today, with a 2 billion parameter model to be released shortly.」とある。「We also train the 2B and 9B models with knowledge distillation (Hinton et al , 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3× bigger.」と蒸留を効果的に使っているもの面白い。5. Ablationsをみるに効果は大きそう
いつもの翻訳ベンチマークでは非常に高い性能を示した。期待大である。Gemma 2 9Bの機械翻訳性能 | ぷるーふおぶこんせぷと (staka.jp)
OpenAIからはGPT-4の間違いを見つけ修正提案するCriticGPTが出ている。今はコードの修正が対象。限界もあるようだがこのような研究は重要。Finding GPT-4’s mistakes with GPT-4 | OpenAI
Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
- Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.8]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。 モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。 実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (Thu, 18 Apr 2024 15:21:34 GMT) - Monte Carlo Tree Search + LLM、「we use the term option as a search node and propose option-level MCTS where each option represents a sequence of tokens, which can range from multiple tokens to several sentences.」というのが興味深く、性能向上にも寄与