Self-Improvement in Language Models: The Sharpening Mechanism
Self-Improvement in Language Models: The Sharpening Mechanism [70.9] 言語モデリングにおける最近の研究は、言語モデルが外部からのフィードバックなしにより高いパフォーマンスを達成するために、言語世代を評価し、洗練する自己改善の可能性を高めている。 我々は、レンズを通して自己改善の能力について、新たな視点を提供する。 言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。 論文参考訳(メタデータ) (Mon, 02 Dec 2024 20:24:17 GMT)
「Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to “sharpen” the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences.」という研究