コンテンツへスキップ
- Fair Machine Learning in Healthcare: A Review [53.9]
医療のための機械学習において公平性の問題が特定されており、特定のグループに対して限られた医療資源を不公平に割り当てたり、過剰な健康リスクを負ったりしている。 公平な問題を露呈し、バイアスを要約し、緩和方法を整理し、将来の機会とともに課題を指摘することで橋を架けます。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 29 Jun 2022 04:32:10 GMT)- ヘルスケア分野でAI活用が進んでいるが、そのなかに含まれかねないバイアスの特定と公正性に関するサーベイ。
- Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision [42.9]
同様の臨床試験に注釈を付けずに自己監督を通じて学習するTrial2Vecを提案する。 臨床試験文書(タイトル、資格基準、対象疾患など)のメタ構造と臨床知識を活用して、コントラスト的なサンプルを自動生成する。 本手法は, 可視化により医療的に解釈可能な埋め込みを実現し, 試行錯誤における最良基準値に対して平均15%の精度向上が得られることを示す。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 29 Jun 2022 15:37:11 GMT)- 臨床試験文書のベクトル化、to vecシリーズでもかなり特殊な例
- Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives [18.0]
ディープラーニングの最新技術進歩であるTransformerは、自然言語処理やコンピュータビジョンで普及している。 我々は、医療画像に対する最先端のTransformerベースのアプローチを包括的にレビューする。
論文 参考訳(メタデータ) (Thu, 2 Jun 2022 16:38:31 GMT)- 医療分野の画像処理でTransformerがどのように使われているかのサーベイ。
- 医療分野とあるが一般的な画像処理でも重要な考え方が多く参考になる。当然ながらMedical image reconstructionなどドメイン依存のタスクも興味深い。
- Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.6]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。 グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。 当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 22 Apr 2022 17:27:00 GMT)- 大規模に連合学習を用いて希少な腫瘍の自動検出を行ったという研究。著者リストで4ページと参加者が非常に多い。連合学習のユースケースとして非常に重要な結果。
- Transformers in Medical Image Analysis: A Review [46.7]
本稿では,医療画像解析分野におけるトランスフォーマーの意識と応用を促進するために,位置紙とプライマーの両方を提示する。 具体的には、まず、Transformerや他の基本的なコンポーネントに組み込まれたアテンションメカニズムのコア概念について概説する。 第2に,医療画像の応用に適したトランスフォーマーアーキテクチャの新しい分類法を提案し,その限界について議論する。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 24 Feb 2022 16:04:03 GMT)- 医療画像解析を対象にしたTransformerベースのモデルのサーベイ。すでに多くの事例があるが、多くの場合他分野のアーキテクチャを医療用に直接応用しており、高度な解析やモデルの問題(parallelization, interpretability, quantification and safetyが挙げられている)に焦点を当てたものは少ないとのこと。
- A Dataset for Medical Instructional Video Classification and Question Answering [16.7]
本稿では,医療ビデオの理解を支援するシステム設計に向けた新たな課題とデータセットについて紹介する。 医療ビデオは多くの救急、救急、医療教育に関する質問に対して、可能な限りの回答を提供するだろうと信じています。 我々は,MedVidCLとMedVidQAデータセットを用いて各タスクをベンチマークし,マルチモーダル学習手法を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Sun, 30 Jan 2022 18:06:31 GMT)