医薬品安全性(副作用予測)のためのXAI

  • Explainable Artificial Intelligence for Pharmacovigilance: What Features Are Important When Predicting Adverse Outcomes? [21.3]
    我々は、個人の健康情報を入力として取り込むモデルを作成し、その個人が急性冠症候群を発症する確率を予測する。 XAIを用いて、特定の薬物がこれらのACS予測に与える影響を定量化した。 ロフェコキシブとセロコキシブの薬物放出特性は、ACS関連副作用予測に0以上の寄与があることが判明した。
    論文  参考訳(メタデータ)   (Sat, 25 Dec 2021 09:00:08 GMT)
    • 医薬品の副作用予測でXAIが有用、現在使われている統計手法に対してvaluable additionになるという内容の論文。MDI(Mean Decrease of Impurity)とMDA(Mean Decrease in Accuracy)、LIME、SHAPを比較している。
      • 既存手法の完全代替は無理だよねというのは納得。それと本件では説明対象がツリー系手法だが、その他の手法でどうなるかも興味がある。

モデル説明の評価: 説明を用いてモデルのラベルを変更できるか?

  • Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations [97.9]
    我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。 単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
    論文  参考訳(メタデータ)   (Fri, 17 Dec 2021 18:29:56 GMT)
    • 偽のホテルレビューか否かを判定するモデルに対し説明手法を適用、そのモデルを騙す(ラベルを変化させる)事に資するかをもって説明手法を評価する研究。BERTに対する説明ではLIMEなど局所説明は役に立たず、BERTを模倣するよう構築された線形モデル(学生モデル)が効果的だったとのこと。
    • コード等は公開予定とのことだが、現状では404

人間とAIが関わる時の役割と情報伝達のあり方

  • Role of Human-AI Interaction in Selective Prediction [20.1]
    我々は、AIシステムの遅延決定について、異なる種類の情報を人間に伝達する影響について研究する。 我々は,AIの予測は明らかにせず,遅延する決定を人間に伝えることで,人間のパフォーマンスを大幅に向上させることが可能であることを示す。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 13 Dec 2021 16:03:13 GMT)
    • 人間とAIがかかわりを持つとき、AIの予測結果を人間に伝えてしまうとそれがバイアスとなってしまい人間の判断を間違えさせる(全体の性能が低くなる)可能性がある。人間にAIの予測結果を伝えるのを遅らせる方が全体としての性能が良いという結果。

Tell me why!: AI(強化学習エージェント)も説明から恩恵を受ける

  • Tell me why! — Explanations support learning of relational and causal structure [24.4]
    説明は人間の学習において重要な役割を担い、特にAIにとって大きな課題が残る分野においてである。 我々は、強化学習エージェントが説明の恩恵を受ける可能性があることを示す。 我々の結果は、説明からの学習が強力な原則であり、より堅牢で一般的な機械学習システムのトレーニングに有望な道筋を提供することを示唆している。
    論文  参考訳(メタデータ)   (Wed, 8 Dec 2021 12:48:22 GMT)
    • 「説明」が強化学習のエージェントに恩恵を与えるかを検証した論文。エージェントは「説明」を予測することでその情報を取り入れるとの設定。「説明」はエージェントが簡単な特徴を好むバイアスの回避、あいまいな経験から分布外への一般化、因果構造を特定に効果があるとしている。

金融分野における倫理的なAI

  • On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services [1.9]
    我々は、高レベルの原則と具体的なデプロイされたAIアプリケーションとのギャップについて、実践的な考察をいかに示すかを示す。 我々は、高レベルの原則と具体的なデプロイされたAIアプリケーションとのギャップについて、実践的な考察をいかに示すかを示す。
    論文  参考訳(メタデータ)   (Tue, 2 Nov 2021 00:15:04 GMT)
    • 金融分野のAI活用で考えるべき倫理などをまとめた論文。ガイドラインの整理などが参考になるとともに現実とのギャップが理解できる内容。
    • 解決策が提示されているわけではないが「Without regulations it is really difficult to reach any ethics goals in the financial services industry.」はその通りだと思う。

Human-Centered Explainable AI (XAI): 人間中心のXAI

  • Human-Centered Explainable AI (XAI): From Algorithms to User Experiences [29.1]
    説明可能なAI(XAI)は近年,膨大なアルゴリズムコレクションを生み出している。 分野は学際的視点と人間中心のアプローチを受け入れ始めている。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 20 Oct 2021 21:33:46 GMT)
    • XAIでもヒューマン・コンピュータ・インタラクション(HCI)、ユーザ・エクスペリエンス(UX)の設計が重要になっており、techno-centricなアプローチには落とし穴があるとの指摘。現状と限界を知るために良い資料との印象。

NLPの深層学習モデルに対する解釈のサーベイ

  • Interpreting Deep Learning Models in Natural Language Processing: A Review [33.8]
    ニューラルネットワークモデルに対する長年にわたる批判は、解釈可能性の欠如である。 本研究では,NLPにおけるニューラルモデルに対する様々な解釈手法について概説する。
    論文  参考訳(メタデータ)   (Wed, 20 Oct 2021 10:17:04 GMT)
    • 自然言語処理のモデルに対する説明方法のサーベイ。「Training-based: 予測時に影響が強い学習インスタンスの識別」「Test-based: テストデータのどこが予測値に影響を与えているか識別」や「joint: 学習時に解釈性を両立させる」「post-hoc:学習したモデルに対して別途解釈性を付与する 」といった観点で説明手法を分類しており分かりやすい。
    • 「Is attention interpretable?」という問いと不明瞭であるという記載は同感で、私個人としてはAttentionをもってinterpretableと呼ぶには違和感がある。解釈性の文脈でAttentionの有用性に対する反論、それに対する再反論などのやり取りは非常に参考になる。

Automatic Essay Scoring(AES)システムの脆さの検証と保護モデル

  • AES Are Both Overstable And Oversensitive: Explaining Why And Proposing Defenses [66.5]
    スコアリングモデルの驚くべき逆方向の脆さの原因について検討する。BERT などのリッチなコンテキスト埋め込みを備えた “エンドツーエンド” モデルとして訓練されているにもかかわらず、Bag of Wordsのように振る舞うことを示唆している。これらの問題に対処するため過敏性と過大性を引き起こすサンプルを高精度で検出できる保護モデルを提案する。
    論文  参考訳(メタデータ)   (Fri, 24 Sep 2021 03:49:38 GMT)
    • Deep Learningを用いて文脈等も考慮する複雑なスコアリングモデルのはずが数個の単語に大きくスコアが影響されることがあるとの指摘。350単語のエッセイに3単語を追加することでスコアを50%変化させることができたとのこと。
    • 保護方法も提案しているとはいえ、このような問題を内包しているモデルが社会に受け入れられるかは謎。。。
      • 文脈すらとらえられるはずのDeep LearningモデルがBoWっぽく動くというのはそのようなこともあるんだろうなとは思う。特定の単語が採点基準上重要な事は人間による評価でもありがち。

Deep Learning モデルの説明にはインタラクティブ性が必要

  • Explainability Requires Interactivity [13.4]
    現代視覚モデルの高度に複雑な決定境界を理解するためのインタラクティブなフレームワークを導入する。 ユーザーはネットワークの決定を徹底的に検査し、調査し、テストすることができる。
    論文  参考訳(メタデータ)   (Thu, 16 Sep 2021 11:02:25 GMT)
    • 複雑なモデルに対して一見単純な「説明」を出すことは危険であり、インタラクティブなやり取りが必要であるとの論文。画像に対して重要個所のヒートマップを出すのではなく、入力画像をスタイル変換していくつかの画像を生成、その予測値を例示して判断を即すアプローチ。笑顔推定であれば「入力画像とほぼ同じだが肌や髪の色が異なる画像」のスコアが著しく低くなっていれば怪しいと感じることができる。
    • ヒートマップによる「説明」はそれっぽいが誤解しやすいのは確か。Talk-to-Editと組み合わせると面白いだろうなーと思う。

CX-ToM(Counterfactual eXplanations with Theory-of Mind): 反復的なXAI

  • CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models [84.3]
    我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。 単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。 本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 6 Sep 2021 07:00:34 GMT)
    • 対話型のXAIフレームワークの提案。AIとユーザのインタラクションを通して説明を行っていくとのことで、「①AIが画像をシマウマと認識」「②ユーザがなぜ馬でないか質問」「③AIは縞模様の画像を表示、ユーザの認識を確認」「④AIは縞模様を重視していると回答」という例が挙げられていた。SHAPやLIMEよりユーザからの信頼性度数と満足度の双方で優れていたとのこと。
      • 人間同士でもQAをしながらモデルの理解を深めるわけで自然なフレームワークに見える。一方で論文中にはちょくちょく手作業が入っていて汎用的に完全自動化できるのかは疑問。