コンテンツへスキップ
- CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models [84.3]
我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。 単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。 本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 6 Sep 2021 07:00:34 GMT)- 対話型のXAIフレームワークの提案。AIとユーザのインタラクションを通して説明を行っていくとのことで、「①AIが画像をシマウマと認識」「②ユーザがなぜ馬でないか質問」「③AIは縞模様の画像を表示、ユーザの認識を確認」「④AIは縞模様を重視していると回答」という例が挙げられていた。SHAPやLIMEよりユーザからの信頼性度数と満足度の双方で優れていたとのこと。
- 人間同士でもQAをしながらモデルの理解を深めるわけで自然なフレームワークに見える。一方で論文中にはちょくちょく手作業が入っていて汎用的に完全自動化できるのかは疑問。