NLPの深層学習モデルに対する解釈のサーベイ Interpreting Deep Learning Models in Natural Language Processing: A Review [33.8]ニューラルネットワークモデルに対する長年にわたる批判は、解釈可能性の欠如である。 本研究では,NLPにおけるニューラルモデルに対する様々な解釈手法について概説する。論文 参考訳(メタデータ) (Wed, 20 Oct 2021 10:17:04 GMT)自然言語処理のモデルに対する説明方法のサーベイ。「Training-based: 予測時に影響が強い学習インスタンスの識別」「Test-based: テストデータのどこが予測値に影響を与えているか識別」や「joint: 学習時に解釈性を両立させる」「post-hoc:学習したモデルに対して別途解釈性を付与する 」といった観点で説明手法を分類しており分かりやすい。「Is attention interpretable?」という問いと不明瞭であるという記載は同感で、私個人としてはAttentionをもってinterpretableと呼ぶには違和感がある。解釈性の文脈でAttentionの有用性に対する反論、それに対する再反論などのやり取りは非常に参考になる。