コンテンツへスキップ
- AI in Games: Techniques, Challenges and Opportunities [40.9]
Libratus、OpenAI Five、AlphaStarといった様々なゲームAIシステムが開発され、プロの人間プレイヤーに勝っている。 本稿では,最近成功したゲームAI,ボードゲームAI,カードゲームAI,ファーストパーソンシューティングゲームAI,リアルタイム戦略ゲームAIについて調査する。
論文 参考訳(メタデータ) (Mon, 15 Nov 2021 09:35:53 GMT)- 碁のようなボードゲーム、テキサス・ホールデムのようなカードゲーム、FPS、リアルタイムストラテジーゲームと4種類のゲームとそのAIに関するサーベイ。ゲームは意思決定と密接に関わっており、応用範囲は広い印象。
- A Survey of Visual Transformers [30.1]
注意に基づくエンコーダデコーダアーキテクチャであるTransformerは、自然言語処理の分野に革命をもたらした。 コンピュータビジョン(CV)分野へのトランスフォーマーアーキテクチャの適用に関する先駆的な研究が最近行われている。 我々は,3つの基本的なCVタスクに対して,100以上の異なる視覚変換器の総合的なレビューを行った。
論文 参考訳(メタデータ) (Thu, 11 Nov 2021 07:56:04 GMT)- 画像分野におけるTransformerのサーベイ。
- 同様のサーベイとしては下記がある(本論文でもイントロダクションで触れられている)
- Social Fraud Detection Review: Methods, Challenges and Analysis [42.3]
レビューはウェブを支配しており、製品情報の信頼できる情報源となっている。 企業は、単一のユーザ、ユーザグループ、あるいは不正コンテンツを生成するために訓練されたボットを使用して、偽情報を広めるために、ソーシャル情報を利用する。 多くの研究がユーザ行動に基づくアプローチを提案し、不正検出の課題に対処するためのテキストをレビューした。
論文 参考訳(メタデータ) (Wed, 10 Nov 2021 11:25:20 GMT)- ボットなどで行われるレビューの不正を検知する研究のサーベイ。時系列で研究課題やアプローチがまとめられているのが分かりやすい。
- A Survey on Green Deep Learning [25.7]
本稿では,グリーンディープラーニング技術の発展を体系的にレビューすることに焦点を当てる。 提案手法は,(1)コンパクトネットワーク,(2)エネルギー効率のトレーニング戦略,(3)エネルギー効率の推論アプローチ,(4)データ利用率の4つのカテゴリに分類される。
論文 参考訳(メタデータ) (Wed, 10 Nov 2021 02:28:08 GMT)- 最近よく話題になるDeepLearningにおけるカーボンフットプリントのようなAIと環境との関わりのサーベイ。アーキテクチャ、学習、推論などモデル構築要素の他、データの使い方(Active LearningやFew shotなど)についても扱っている。各チャプターの整理図が良い感じでありがたい。
- Are we ready for a new paradigm shift? A Survey on Visual Deep MLP [33.0]
初めて出現したニューラルネットワーク構造である多層パーセプトロン(MLP)は大きなヒットとなった。 ハードウェア・コンピューティングのパワーとデータセットのサイズに制約され、かつては何十年にもわたって沈んだ。 我々は、手動の特徴抽出から、局所受容野を持つCNNへのパラダイムシフト、さらにグローバル受容野を持つTransformへのパラダイムシフトを目撃した。
論文 参考訳(メタデータ) (Sun, 7 Nov 2021 12:02:00 GMT)- CNN、Transformer(ViTなど)、MLP(MLP-Mixerなど)と群雄割拠な感のある画像処理に対するMLP中心のサーベイ。
- Modeling Techniques for Machine Learning Fairness: A Survey [17.9]
近年,機械学習モデルのバイアスを軽減するため,様々な手法が開発されている。 本稿では,プロセス内バイアス軽減技術の現状を概観する。
論文 参考訳(メタデータ) (Thu, 4 Nov 2021 17:17:26 GMT)- 公平性の実現、バイアスの除去・軽減技術に関するサーベイ。
- 決定的な方法はない分野でもあり、整理軸も概観も非常に参考になる。
- Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey [67.8]
BERTのような大規模で事前訓練された言語モデルは、自然言語処理(NLP)の分野を大きく変えた。 本稿では,これらの大規模言語モデルを用いたNLPタスクの事前学習,微調整,プロンプト,テキスト生成といった手法を用いた最近の研究について紹介する。
論文 参考訳(メタデータ) (Mon, 1 Nov 2021 20:08:05 GMT)- 事前学習モデルを用いたNLPのサーベイ、本文30ページ。「事前学習+Fine-tuning」「Prompt-based learning 」「テキスト生成への帰着」の3つのパラダイムで整理している。加えてPLMによるデータ生成も扱われており非常に勉強になる。
- From Theories on Styles to their Transfer in Text: Bridging the Gap with a Hierarchical Survey [10.8]
スタイル転送は、既存のテキストを書き換え、望ましいスタイル特性を示すパラフレーズを作成することを目的としている。 少数の調査では、この分野の方法論的な概要が示されているが、研究者が特定のスタイルにフォーカスするのを支援していない。 それらを階層に整理し、それぞれの定義の課題を強調し、現在の研究状況のギャップを指摘します。
論文 参考訳(メタデータ) (Fri, 29 Oct 2021 15:53:06 GMT)- 文体の転送に関するサーベイで58ページと大規模。整理軸や分野の状況を概観するのに役立つ。
- Applications of Multi-Agent Reinforcement Learning in Future Internet: A Comprehensive Survey [45.8]
マルチエージェント強化学習(MARL)により、各ネットワークエンティティは環境だけでなく、他のエンティティのポリシーも観察することで、最適なポリシーを学ぶことができる。 MARLはネットワークエンティティの学習効率を大幅に向上させることができ、近年、新興ネットワークにおける様々な問題を解決するために使用されている。
論文 参考訳(メタデータ) (Tue, 26 Oct 2021 08:26:55 GMT)- 5Gやその先にあるようなネットワークでマルチエージェントな強化学習で何が必要か、どのような研究課題があるかをまとめたサーベイ。研究課題については既存アプローチが整理されており非常に勉強になる。
- Generalized Out-of-Distribution Detection: A Survey [25.8]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。 まず,先述した5つの問題を含む一般OOD検出という汎用フレームワークを提案する。 私たちのフレームワークでは、これらの5つの問題を特別なケースやサブタスクと見なすことができ、区別しやすくなります。
論文 参考訳(メタデータ) (Thu, 21 Oct 2021 17:59:41 GMT)- Out-of-Distribution検出は実用上重要だがanomaly detection (AD), novelty detection (ND), open set recognition (OSR), outlier detection (OD),これらを含む一般的なOD検出など様々なタスクがある。OOD検出の情報を整理するのに非常に良い資料。本文は14ページとコンパクトだが、引用数315と広範囲。