Out-of-Distribution検出のサーベイ

  • Generalized Out-of-Distribution Detection: A Survey [25.8]
    アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。 まず,先述した5つの問題を含む一般OOD検出という汎用フレームワークを提案する。 私たちのフレームワークでは、これらの5つの問題を特別なケースやサブタスクと見なすことができ、区別しやすくなります。
    論文  参考訳(メタデータ)   (Thu, 21 Oct 2021 17:59:41 GMT)
    • Out-of-Distribution検出は実用上重要だがanomaly detection (AD), novelty detection (ND), open set recognition (OSR), outlier detection (OD),これらを含む一般的なOD検出など様々なタスクがある。OOD検出の情報を整理するのに非常に良い資料。本文は14ページとコンパクトだが、引用数315と広範囲。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です