クエリーベースのビデオ要約

  • DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video Summarization [127.2]
    DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。 DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。 MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
    論文  参考訳(メタデータ)   (Thu, 13 May 2021 17:33:26 GMT)
    • 究極的なマルチモーダルであると同時に、強化学習のフレームワークを利用して性能を出している点が興味深い。

ポリシー融合

  • Policy Fusion for Adaptive and Customizable Reinforcement Learning Agents [137.9]
    異なる行動政策を結合して有意義な「融合」政策を得る方法を示す。 事前学習されたポリシーを組み合わせるための4つの異なるポリシー融合手法を提案する。 これらの手法がゲーム制作や設計に実際どのように役立つのか,実例とユースケースをいくつか紹介する。
    論文  参考訳(メタデータ)   (Wed, 21 Apr 2021 16:08:44 GMT)
    • 主としてゲーム(NPCの動き)を対象にPolicyの融合を取り扱った論文。多様性を生み出す上では重要な気がする。