GPT-3+人間のフィードバックを用いた再帰的な要約モデル Recursively Summarizing Books with Human Feedback [10.1]本論では,小説全体の抽象的要約の課題について述べる。 タスクの小さな部分でトレーニングされたモデルを使用して、より広範なタスクに対するフィードバックの提供を支援します。 書籍長要約のための最近のBookSumデータセットについて,最先端の成果を得た。論文 参考訳(メタデータ) (Wed, 22 Sep 2021 17:34:18 GMT)本のセクションを要約、それらをさらに要約して本全体の要約を作成する方針の研究。それ自体はシンプルなアプローチだが、GPT-3(family)の使用、人間のラベラーのフィードバックを強化学習に利用など詳細な手法が興味深い。「We chose narrative fiction books due to our belief that they were the most difficult to summarize, which is supported by our later qualitative findings (Appendix J).」というのも面白い。ELYZA digestとかでも難しいとされていた気がする。