Automated Safety Benchmarking: A Multi-agent Pipeline for LVLMs 

  • Automated Safety Benchmarking: A Multi-agent Pipeline for LVLMs [61.0]
    大規模視覚言語モデル(LVLM)は、クロスモーダルタスクにおいて顕著な能力を示すが、重大な安全性上の課題に直面している。 既存のベンチマークは、労働集約的な建設プロセス、静的な複雑さ、限定的な差別力によって妨げられている。 LVLMの安全性ベンチマークのための最初の自動システムであるVLSafetyBencherを提案する。
    論文  参考訳(メタデータ)   (Tue, 27 Jan 2026 11:51:30 GMT)
  • LVLMのための安全性評価ベンチマーク、「Ex-eriments validates that VLSafetyBencher can construct high-quality safety benchmarks within one week at a minimal cost. The generated benchmark effectively distinguish safety, with a safety rate disparity of 70% between the most and least safe models.」とのこと。
  • この手のベンチマークではGPT系モデルの優位性が目立つことが多いが、本論文ではClaude-Sonnet-4がトップ。LVLMとしての評価だからだろうか。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です