コンテンツへスキップ
- A Survey on In-context Learning [77.8]
In-context Learning (ICL) は自然言語処理(NLP)の新しいパラダイムとして登場した。 まず、ICLの形式的定義を示し、関連する研究との相関を明らかにする。 次に、トレーニング戦略、迅速なデザイン戦略、関連する分析を含む高度なテクニックを組織化し、議論する。
論文 参考訳(メタデータ) (Fri, 27 Sep 2024 02:55:06 GMT)
- In-context learningのサーベイ
- A Survey on the Honesty of Large Language Models [115.8]
正直とは、大きな言語モデル(LLM)を人間の価値と整合させる基本的な原則である。 将来性はあるものの、現在のLLMは依然として重大な不正直な行動を示す。
論文 参考訳(メタデータ) (Fri, 27 Sep 2024 14:34:54 GMT)
- 「Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don’t know and be able to faithfully express their knowledge.」から始まるサーベイ。
- リポジトリはGitHub – SihengLi99/LLM-Honesty-Survey
- The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends [65.0]
会話分析(CA)は、会話データから重要な情報を発見し分析する。 本稿では,CAタスクの徹底的なレビューとシステム化を行い,既存の業務を要約する。 会話シーンの再構築,奥行きの属性分析,ターゲットトレーニングの実行,会話の生成から,CAの4つの重要なステップを導出した。
論文 参考訳(メタデータ) (Sat, 21 Sep 2024 16:52:43 GMT)
- 「Conversation analysis aims to identify critical information from human-human, humanmachine, machine-machine, and multi-party conversations, derive the underlying causes, and develop the solutions to drive relevant improvements for more effective goal achievement continuously, such as elevating customer experience, reducing complaint rate.」という定義の会話分析に関するサーベイ。
- 様々なタスクがあり、このような軸での分析も面白い。
- A Survey of Foundation Models for Music Understanding [60.8]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。 音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (Sun, 15 Sep 2024 03:34:14 GMT)
- 「This work, to our best knowledge, is one of the early reviews of the intersection of AI techniques and music understanding.」とのこと。非常に包括的なサーベイ。
- Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.3]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。 本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (Mon, 16 Sep 2024 09:06:44 GMT)
- 信頼できるAIに関するサーベイはよくあるがRAGを対象としたものは珍しいように思う。
- リポジトリはGitHub – smallporridge/TrustworthyRAG
- Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey [22.5]
優先度調整は、深層生成モデルと人間の嗜好を整合させる重要なプロセスである。 この調査は、最近の嗜好調整の進歩と人間のフィードバックの統合を概観するものである。
論文 参考訳(メタデータ) (Tue, 17 Sep 2024 21:28:51 GMT)
- Preference Tuning のサーベイ
- What is the Role of Small Models in the LLM Era: A Survey [13.2]
大規模言語モデル(LLM)は人工知能(AGI)の進歩に大きな進歩をもたらし、GPT-4やLLaMA-405Bのような大規模モデルの開発に繋がった。 モデルのサイズを拡大すると、計算コストとエネルギー消費が指数関数的に増加し、これらのモデルは限られたリソースを持つ学術研究者やビジネスにとって実用的ではない。 同時に、Small Models (SM) は実際的な設定で頻繁に使用されるが、その重要性は過小評価されている。
論文 参考訳(メタデータ) (Tue, 10 Sep 2024 20:45:43 GMT)
- 実用上重要なスモールモデルに関するサーベイ。「 there is no clear definition distinguishing large models from small ones.」はですよねーという感じ。とはいえ整理軸含めて、納得感のある内容。
- リポジトリはGitHub – tigerchen52/role_of_small_models