コンテンツへスキップ
- A Survey of Mamba [26.7]
近年,基礎モデル構築の代替手段として,Mambaという新しいアーキテクチャが登場している。 本研究では,マンバモデルの発展,多様なデータにマンバを適応させる技術,およびマンバが優れている応用について検討する。
論文 参考訳(メタデータ) (Fri, 02 Aug 2024 09:18:41 GMT)
- 期待が膨らむMambaのサーベイ。
- 「Mamba, an emerging deep learning architecture, has demonstrated remarkable success across diverse domains, such as language generation, image classification, recommendation, and drug discovery, owing to its powerful modeling capabilities and computational efficiency.」と、Transformerを超えていけるか楽しみ。
- From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future [15.6]
本稿では,大規模言語モデル (LLM) と LLM をベースとしたソフトウェア工学エージェントの実践とソリューションについて検討する。 特に、要件エンジニアリング、コード生成、自律的な意思決定、ソフトウェア設計、テスト生成、ソフトウェアメンテナンスの6つの主要なトピックを要約します。 我々は、使用するモデルとベンチマークについて論じ、ソフトウェア工学におけるそれらの応用と有効性について包括的に分析する。
論文 参考訳(メタデータ) (Mon, 05 Aug 2024 14:01:15 GMT)
- LLMを用いたソフトウエア工学に関するサーベイ。エージェントにもフォーカスしている。
- 「The analysis revealed that the emergence of LLM-based agents has led to extensive research and applications across various software engineering topics, demonstrating different emphases compared to traditional LLMs in terms of tasks, benchmarks, and evaluation metrics.」と結論し、Agentの有効性を示唆していそう。(しかしtraditional LLMsって・・・)
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.5]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。 本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (Fri, 2 Aug 2024 15:14:53 GMT)
- マルチモーダルなLLMに関するサーベイ。多くの研究機関が取り組んでおり成果も多数。
- 図がとても参考になる。
- A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More [16.5]
大規模言語モデル(LLM)は、人間のクエリに対する事実的かつ一貫性のある応答を生成することができる。 しかし、学習データの混合品質は、望ましくない応答を発生させる可能性がある。
論文 参考訳(メタデータ) (Tue, 23 Jul 2024 06:45:52 GMT)
- アライメント手法に関するサーベイで、salesforceのチームによる包括的なもの
- 「Over the past two years, various methods have been proposed from different perspectives to enhance LLMs, particularly in aligning them with human expectation.」とある通り、近年急速に研究が進む(というよりは少し前から出来上がってきた)分野
- Formalizing UML State Machines for Automated Verification — A Survey [15.0]
モデリング言語(UML)は、動的システムのモデリングの標準である。 本稿では、設計段階でモデルチェックを行う目的でUMLステートマシンセマンティクスの形式化に関する1997年から2021年までの既存の研究を包括的に調査する。
論文 参考訳(メタデータ) (Wed, 24 Jul 2024 12:15:31 GMT)
- UMLについて形式検証を軸に調査したサーベイ
- 本サーベイにも関係するがLLMを用いて自然言語で書かれた使用を形式言語に変換、形式検証に持ち込むようなアプローチは興味深いと思っている(研究はされている)
- A Survey on Employing Large Language Models for Text-to-SQL Tasks [7.7]
リレーショナルデータベースに格納されるデータの量の増加により、様々な分野において、このデータの効率的なクエリと利用の必要性が高まっている。 LLM(Large Language Models)の最近の発展を活かすため、様々な新しい手法が登場し、迅速なエンジニアリングと微調整に重点が置かれている。
論文 参考訳(メタデータ) (Sun, 21 Jul 2024 14:48:23 GMT)
- 実用的にも重要なSQL生成タスクのサーベイ
- LLMの影響は大きい
- Merge, Ensemble, and Cooperate! A Survey on Collaborative Strategies in the Era of Large Language Models [32.3]
多様な機能にもかかわらず、Large Language Models (LLM) は様々な長所と短所を示す。 これらの課題に対処するため、最近の研究はLLMの協調戦略を探求している。 本稿では,この新たな研究領域の概要を概観し,そのようなコラボレーションの背景にあるモチベーションを明らかにする。
論文 参考訳(メタデータ) (Mon, 08 Jul 2024 16:29:08 GMT)
- 複数のLLMをうまく使う方法のサーベイ
- 研究領域がとても広いことがよくわかる(そして絵がかわいい)
- Retrieval-Augmented Generation for Natural Language Processing: A Survey [25.1]
検索強化生成(RAG)は、外部知識データベースを利用して大きな言語モデルを拡張する。 本稿では,RAGの重要技術,特に検索器と検索融合について概説する。 RAGは、自然言語処理のタスクや産業シナリオで使われる。
論文 参考訳(メタデータ) (Thu, 18 Jul 2024 06:06:53 GMT)
- 実用上重要なRAGのサーベイ。
- 構成要素の選択肢が多く、整理された情報はとてもありがたい。
- AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models [84.7]
3つのデシラタを言語モデルのための優れたベンチマークとして提示する。 ベンチマークでは、以前のベンチマークでは示されていなかったモデルランキングの新しいトレンドが明らかになった。 AutoBencherを使って、数学、多言語、知識集約的な質問応答のためのデータセットを作成しています。
論文 参考訳(メタデータ) (Thu, 11 Jul 2024 10:03:47 GMT)
- ベンチマークを自動的に構築する取り組み。
- しばらくするとベンチマークを自動構築、後述のような方法でデータも自動合成、自己改善、みたいなモデル構築が流行ったりするのだろうか。まさにAutoML。
- リポジトリはGitHub – XiangLi1999/AutoBencher
- A Survey of Data Synthesis Approaches [20.2]
1)多様性の向上,2)データバランシング,3)ドメインシフトへの対応,4)エッジケースの解決。 本稿では, 合成データの今後の方向性と, 重要な3つの方向性についても論じる: 1) 品質, 2) 合成データの評価, 3) マルチモデルデータ拡張。
論文 参考訳(メタデータ) (Thu, 04 Jul 2024 06:37:09 GMT)
- 合成データ関連のサーベイ。
- リポジトリはGitHub – MiuLab/SynData-Survey