コンテンツへスキップ
- VELVET: a noVel Ensemble Learning approach to automatically locate VulnErable sTatements [62.9]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。 我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。 VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (Mon, 20 Dec 2021 22:45:27 GMT)- グラフ構造情報、系列情報を併用した脆弱性検知手法の提案。合成データで事前学習し現実のデータでfine tuningすることで優れた性能を達成とのこと。
- MuMuQA: Multimedia Multi-Hop News Question Answering via Cross-Media Knowledge Extraction and Grounding [131.9]
我々は、画像中のオブジェクトをテキストにクロスメディアグラウンドする必要があるニュース記事について、1,384の質問を含む新しいQA評価ベンチマークを示す。 具体的には、画像キャプチャーペアの推論を必要とするマルチホップ質問によって、参照されている接地された視覚オブジェクトを特定し、その質問に答えるためにニュースボディテキストからスパンを予測する。 本稿では, マルチメディアデータ拡張フレームワークを提案する。これは, クロスメディア知識抽出と合成質問応答生成に基づいて, このタスクの弱い監視を提供するデータを自動的に強化するものである。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 20 Dec 2021 18:23:30 GMT)- クロスメディア(画像、キャプション、ニュース本文)、マルチホップなQAデータセットの提案。人間が作成した評価用データは1384、自動生成された学習用(Silver Training Set)のデータを含むのが特徴的。Oscar-largeでも人間に比べて大幅に性能が悪い難しいデータセットになっている。
- リポジトリはGitHub – uiucnlp/MuMuQAだがcoming soon