コンテンツへスキップ
- Can Large Language Models Truly Understand Prompts? A Case Study with Negated Prompts [19.4]
これまでの研究では、言語モデル(LM)のサイズと、異なる下流のNLPタスクにおけるゼロショットのパフォーマンスとの間には、スケーリングの法則が存在することが示されている。 本研究では,この現象が負のプロンプトでタスク上で大きなLMを評価する際には有効ではなく,逆のスケーリング法則を示す。
論文 参考訳(メタデータ) (Mon, 26 Sep 2022 14:05:10 GMT)
- Bidirectional Language Models Are Also Few-shot Learners [54.4]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。 SAPは質問応答と要約に有効であることを示す。 この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (Thu, 29 Sep 2022 01:35:57 GMT)- Promptを用いるモデルのほとんどが単方向モデルだが、双方向モデルでもpromptを実現するフレームワークを提案、少ないパラメータでzero/few shotでの優れた性能を確認とのこと。
- 面白い結果である一方で(論文でも触れられている通り)計算コストが凄そう…
- 双方向だと穴埋めがベースなのでしょうがないとも思いつつ、パラメータが少ないけど計算量が莫大って本当に少ないパラメータで済んでいるのだろうか…?