- Do ever larger octopi still amplify reporting biases? Evidence from judgments of typical colour [27.8]
原文で訓練された言語モデル(LM)は、物理世界に直接アクセスすることができない。 より大きな言語モデルにおける色の観点からの報告バイアスについて検討する。
論文 参考訳(メタデータ) (Mon, 26 Sep 2022 15:45:23 GMT)- 大規模言語モデルのバイアスを色に関するPromptで検証した論文。言語モデルが非常に大規模になるとGoogle Ngramよりも人間のスコアに近づいているのが面白い。
- データセットとしてnala-cub/coda: The World of an Octopus: How Reporting Bias Influences a Language Model’s Perception of Color (github.com) を使用している
日: 2022年10月5日
Dataset distillationを用いた医療画像共有
- Dataset Distillation for Medical Dataset Sharing [38.7]
データセットの蒸留は、トレーニングされたモデルが元の大きなデータセットと同等のパフォーマンスを達成するように、小さなデータセットを合成することができる。 新型コロナウイルスの胸部X線画像データセットによる実験結果から,胸部X線画像が不足していても高い検出性能が得られた。
論文 参考訳(メタデータ) (Thu, 29 Sep 2022 07:49:20 GMT)- Dataset Distillationを医療画像のようなプライバシーが重要な分野に適用するという論文。プライバシー保護とコスト低減を両立できそうな点が面白い
- 各種攻撃への耐性に興味津々
- Dataset Distillationを医療画像のようなプライバシーが重要な分野に適用するという論文。プライバシー保護とコスト低減を両立できそうな点が面白い
同じグループからデータセット蒸留法も提案されている。
- Dataset Distillation using Parameter Pruning [38.7]
データセットの蒸留は、トレーニングされたモデルが元の大きなデータセットと同等に高いパフォーマンスを達成するように、小さなデータセットを合成することができる。 提案手法は, より堅牢な蒸留データセットを合成し, 蒸留プロセスにおいて, 難解なパラメータを抽出することにより蒸留性能を向上させる。
論文 参考訳(メタデータ) (Thu, 29 Sep 2022 07:58:32 GMT)