WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.5] ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。 最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。 LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。 論文参考訳(メタデータ) (Fri, 08 Nov 2024 09:58:02 GMT)
エージェント開発において重要となるワークフロー生成に関するベンチマークの提案とLLMの構築。
(1) Data Collection、(2) Query Expansion、(3) Workflow Generation、合成データを用いたWorkflowBenchの作成、fine-tuneによる WorkflowLlamaの構築と合成データを併用する一般的な手順ではあるが、GPT-4o w/ICLを完全にoutperformしているのが興味深い。