コンテンツへスキップ
- Automatic Related Work Generation: A Meta Study [5.0]
自然言語処理では、通常「関連作業」という節で文献レビューが行われる。 自動作業生成の課題は, 「関連作業」 セクションを自動生成することである。 本稿では,問題定式化,データセット収集,方法論的アプローチ,性能評価,今後の展望の観点から,関連作業生成に関する既存の文献をメタスタディで比較する。
論文 参考訳(メタデータ) (Thu, 6 Jan 2022 01:16:38 GMT)- 論文にだいたいある「Related works」を自動生成することを目的とした研究のサーベイ。有用そう&今であれば出来そうな気もしつつ難しそうな気もするタスクであるが、サーベイからは発展途上との印象をうける。
- All You Need In Sign Language Production [50.4]
手話の認識と生成のためには、いくつかの重要な課題に対処する必要があります。本稿ではSLP( Sign Language Production)のバックボーンアーキテクチャや手法を簡潔に紹介し、SLPの分類について提案する。 最後に、SLPと性能評価のための一般的なフレームワーク、およびSLPの最近の発展、利点、限界に関する議論について、今後の研究の行程についてコメントする。
論文 参考訳(メタデータ) (Thu, 6 Jan 2022 18:10:58 GMT)- 深層学習を中心とした手話に関するサーベイ。その中でもSign Language Productionに焦点を当てており、題名の通り包括的なサーベイの印象。Sign Language Recognition (SLR)とSign Language Production (SLP)の問題の違いなどが参考になった。
- What is Event Knowledge Graph: A Survey [46.6]
本稿では、歴史、オントロジー、例、アプリケーションビューからイベントナレッジグラフ(EKG)を包括的に調査する。 EKGは、インテリジェント検索、質問回答、レコメンデーション、テキスト生成など、多くの機械学習および人工知能アプリケーションにおいて、ますます重要な役割を担っている。
論文 参考訳(メタデータ) (Fri, 31 Dec 2021 03:42:55 GMT)- イベントの概念を追加されたナレッジグラフに関するサーベイ。「イベント」ノードの追加、「イベント-イベント」と「イベント-エンティティ」の関係(エッジ)の追加がされ表現力が強化、検索等で重要な概念になることがサーベイされている。色々な取り組みがあってとても参考になる。
- Automated Graph Machine Learning: Approaches, Libraries and Directions [81.2]
我々は、グラフ機械学習のためのHPO(hyper-parameter optimization)とNAS(neural architecture search)をカバーする自動グラフマシンアプローチについて論じる。 当社の専用かつ世界初のグラフ機械学習のためのオープンソースライブラリであるAutoGLを紹介します。 本論文は,自動グラフ機械学習のためのアプローチ,ライブラリ,方向性に関する,最初の体系的かつ包括的な議論である。
論文 参考訳(メタデータ) (Tue, 4 Jan 2022 18:31:31 GMT)
- Deep Facial Synthesis: A New Challenge [76.0]
まず,FS2Kという,2,104のイメージスケッチペアからなる高品質なFSSデータセットを提案する。 第2に, 古典的手法139点を調査し, 最大規模のFSSについて検討した。 第3に、FSGANという単純なFSSのベースラインを提示する。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 31 Dec 2021 13:19:21 GMT)- 2100以上のデータからなる顔のスケッチデータセット(性別等の属性付き)の紹介と広範囲な調査、ベースラインの提示。顔合成に関するサーベイとしても興味深い内容。
- Machine Learning Application Development: Practitioners’ Insights [18.1]
MLアプリケーション開発の課題とベストプラクティスを理解することを目的とした調査について報告する。 80人の実践者から得られた結果を17の発見にまとめ、MLアプリケーション開発の課題とベストプラクティスを概説する。 報告された課題が、MLベースのアプリケーションのエンジニアリングプロセスと品質を改善するために調査すべきトピックについて、研究コミュニティに知らせてくれることを期待しています。
論文 参考訳(メタデータ) (Fri, 31 Dec 2021 03:38:37 GMT)- AI/機械学習の実用を行っている人へのアンケート結果の報告。周りの人がどのようなことをやっているのかを知るために参考になる。
- Findingsも(全部同意というわけではないが)納得のいく内容が多い。Finding 12の「roughly one-third of the practitioners write code from scratch for model implementation」はやや驚き。どこからがscratchなんだろう?「Practitioners also mentioned using their own custom auto-ML system for ML model training.」も納得感があって、私もGitHub – s-taka/fugumlを作っている。報告ではクラスバランスが重視されている印象があるが、個人的には不均衡データの取り扱いはドメインに強く依存するなーと思う。
- A Survey on Gender Bias in Natural Language Processing [22.9]
自然言語処理における性別バイアスに関する304論文について調査する。 ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。 性別偏見の研究は、4つの中核的な限界に悩まされている。1)ジェンダーを流動性と連続性を無視した二変数変数として扱う。 2) 単言語で実施されている。 3) 倫理的考察を無視している。 4) 男女差の非常に限定的な定義と, 評価基準とパイプラインの欠如に根本的な欠陥がある。
論文 参考訳(メタデータ) (Tue, 28 Dec 2021 14:54:18 GMT)- AIの社会実装において逃げてはいけないジェンダーバイアスに関するサーベイ。4つの問題が指摘されているが、その中でもジェンダー及びジェンダーバイアスの定義ができていないというのは非常に重要な指摘であると思う。
- Multimodal Image Synthesis and Editing: A Survey [41.6]
マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。 明確な手がかりを提供する従来のビジュアルガイダンスとは異なり、マルチモーダルガイダンスは画像合成と編集において直感的で柔軟な手段を提供する。 本稿では、GAN(Generative Adversarial Networks)、GAN Inversion、Transformer、NeRFやDiffusionモデルなどを含む詳細なフレームワークを用いたマルチモーダル画像合成と編集手法について述べる。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 27 Dec 2021 10:00:16 GMT)
- Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP [22.8]
単語と文字のハイブリッドなアプローチと,学習セグメンテーションに基づくサブワードベースのアプローチが提案され,評価されていることを示す。 すべてのアプリケーションに対して銀の弾丸が存在することはあり得ない。
論文 参考訳(メタデータ) (Mon, 20 Dec 2021 13:04:18 GMT)- 自然言語処理の基礎となるTokenizeの歴史が書かれたサーベイ(?)結論は銀の弾丸はないので応用領域ごとに考えるべきというものだが、歴史が非常に参考になる。
- 特に日本語では自然言語処理には形態素解析が重要になることが多く、目的に応じて手法(アプローチ)が異なるのは納得感がある。
- Measure and Improve Robustness in NLP Models: A Survey [23.5]
堅牢性は視覚やNLPなどのアプリケーションで別々に研究されており、様々な定義、評価、緩和戦略が研究の複数のラインで行われている。 まず、ロバスト性の定義を複数結合し、その後、ロバスト性障害を特定し、モデルのロバスト性を評価する様々な作業ラインを統一します。 我々は、NLPモデルの堅牢性を効果的に改善する方法をより体系的な視点で、データ駆動型、モデル駆動型、インダクティブプライオリベースである緩和戦略を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 15 Dec 2021 18:02:04 GMT)- 社会実装で重要な自然言語処理モデル頑健性について評価方法や、改善方法をまとめたサーベイ。本文は8ページと短めだが簡潔にまとまっておりベンチマークなども参考になる。