- SoK: Watermarking for AI-Generated Content [112.9]
ウォーターマーキングスキームは、AI生成コンテンツに隠された信号を埋め込んで、信頼性の高い検出を可能にする。 透かしは、誤情報や偽造と戦ってAIの安全性と信頼性を高める上で重要な役割を果たす。 本研究の目的は、研究者が透かし法や応用の進歩を指導し、GenAIの幅広い意味に対処する政策立案者を支援することである。
論文 参考訳(メタデータ) (Wed, 27 Nov 2024 16:22:33 GMT) - Wartermarkingに関するサーベイ。
タグ: Survey
MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.9]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。 開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。 この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (Fri, 22 Nov 2024 18:59:54 GMT) - MLLMの評価に関するサーベイで、リポジトリ GitHub – BradyFU/Awesome-Multimodal-Large-Language-Models at Benchmarks が非常に充実。
A Survey on LLM-as-a-Judge / From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
LLM as a judgeの必要性は至る所で指摘されていて、論文もとても多い。先週2つのサーベイがでていた。いずれも複数研究機関の研究者による共著でリポジトリを公開する形式となっている。1研究機関のチームで調査するのはしんどい時代になっているのだろうか。。。(後者のリポジトリ公開は非常にありがたい)
- A Survey on LLM-as-a-Judge [10.3]
大規模言語モデル(LLM)は、様々な領域で大きな成功を収めています。 LLMは、従来の専門家主導の評価に代わる魅力的な代替手段である。 LLM-as-a-Judgeシステムはどうやって構築できるのか?
論文 参考訳(メタデータ) (Sat, 23 Nov 2024 16:03:35 GMT) - リポジトリはGitHub – IDEA-FinAI/LLM-as-a-Judge
- From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge [32.6]
人工知能(AI)と自然言語処理(NLP)において、長い間、評価と評価が重要な課題であった。 大規模言語モデル(LLM)の最近の進歩は”LLM-as-a-judge”パラダイムを刺激している。
論文 参考訳(メタデータ) (Mon, 25 Nov 2024 17:28:44 GMT) - プロジェクトサイトはLLM-as-a-judge、リポジトリ(論文リストなど)はGitHub – llm-as-a-judge/Awesome-LLM-as-a-judge
Multilingual Large Language Models: A Systematic Survey
- Multilingual Large Language Models: A Systematic Survey [39.0]
本稿では,多言語大言語モデル(MLLM)の最新研究を包括的に調査する。 まず,MLLMのアーキテクチャと事前学習の目的について論じ,多言語機能に寄与する重要なコンポーネントや方法論を強調した。 本稿では,MLLMの言語間知識,推論,人的価値との整合性,安全性,解釈可能性,専門的応用に関する詳細な分類とロードマップを示す。
論文 参考訳(メタデータ) (Sun, 17 Nov 2024 13:21:26 GMT) - マルチリンガルなLLMのサーベイ。MLLMのMは(最近は)マルチモーダルであることが多いので若干戸惑う。
- リポジトリはGitHub – tjunlp-lab/Awesome-Multilingual-LLMs-Papers: Awesome-Multilingual-LLMs-Papers
Shortcut Learning in In-Context Learning: A Survey
- Shortcut Learning in In-Context Learning: A Survey [17.2]
ショートカット学習(英: Shortcut learning)とは、モデルが実践的なタスクにおいて、単純で非破壊的な決定ルールを採用する現象を指す。 In-Context Learning(ICL)におけるショートカット学習に関する関連研究をレビューするための新しい視点を提供する。
論文 参考訳(メタデータ) (Mon, 04 Nov 2024 12:13:04 GMT) - In-context learningにおけるショートカット学習のサーベイ。ニッチな分野のような気がしつつ、問題になることは多いので参考になる。
Autoregressive Models in Vision: A Survey
- Autoregressive Models in Vision: A Survey [119.2]
本調査は、視覚に適用される自己回帰モデルに関する文献を包括的に調査する。 視覚的自己回帰モデルを,画素ベース,トークンベース,スケールベースを含む3つの一般的なサブカテゴリに分割する。 本稿では,画像生成,映像生成,3D生成,マルチモーダル生成など,コンピュータビジョンにおける自己回帰モデルの多面的分類を提案する。
論文 参考訳(メタデータ) (Fri, 08 Nov 2024 17:15:12 GMT) - Towards Unifying Understanding and Generation in the Era of Vision Foundation Models: A Survey from the Autoregression Perspective – arXiv最新論文の紹介でも取り上げた通りVisionにも応用が進むAutoregressiveモデルのサーベイ。
- リポジトリはGitHub – ChaofanTao/Autoregressive-Models-in-Vision-Survey: The paper collections for the autoregressive models in vision.
A Survey of Event Causality Identification: Principles, Taxonomy, Challenges, and Assessment
- A Survey of Event Causality Identification: Principles, Taxonomy, Challenges, and Assessment [6.5]
事象因果同定(ECI)は自然言語処理(NLP)において重要な課題となっている。 本分類法は文レベル(SECI)と文書レベルの事象因果同定(DECI)の2つの主要なタスクに従ってECIの手法を分類する。
論文 参考訳(メタデータ) (Fri, 15 Nov 2024 17:19:42 GMT) - Event Causality Identificationのサーベイ
Adversarial Training: A Survey
- Adversarial Training: A Survey [130.9]
敵対的トレーニング( Adversarial Training、AT)とは、相手の例をトレーニングプロセスに統合することである。 近年の研究では、様々な敵攻撃に対するディープニューラルネットワークの堅牢性向上におけるATの有効性が実証されている。
論文 参考訳(メタデータ) (Sat, 19 Oct 2024 08:57:35 GMT) - Adversarial Trainingのサーベイ
Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey
- Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey [50.0]
マルチモーダル生成モデルは、ビルトインの安全機構をバイパスし、潜在的に有害なコンテンツの生成を誘導できる、ジェイルブレイク攻撃の影響を受けやすい。 本調査は,マルチモーダル生成モデルにおけるジェイルブレイクと防御についてレビューする。
論文 参考訳(メタデータ) (Thu, 14 Nov 2024 07:51:51 GMT) - マルチモーダル設定におけるJailbreak攻撃のサーベイ。モダリティが増えると攻撃に関するバリエーションも増え、面白い(と同時に防御の難しさが興味深い)
- 本サーベイでは「1) Input Level: Attackers and defenders operate solely on the input data.」、「2) Encoder Level: With access to the encoder, attackers optimize adversarial inputs to inject malicious information into the encoding process, while defenders work to prevent harmful information from being encoded within the latent space」、「3) Generator Level: With full access to the generative models, attackers leverage inference information, such as activations and gradients, and fine-tune models to increase adversarial effectiveness, 」、「4) Output Level: With the output from the generative model, attackers can iteratively refine adversarial inputs,」というレベル分けを採用している
- リポジトリはGitHub – liuxuannan/Awesome-Multimodal-Jailbreak
Beyond Model Adaptation at Test Time: A Survey
- Beyond Model Adaptation at Test Time: A Survey [43.0]
機械学習アルゴリズムは、テストディストリビューションのサンプルがトレーニング中に観察されるものから逸脱し始めたときに苦労する。 テスト時間適応は、ソースデータのみに基づくトレーニングモデルによるドメイン適応とドメイン一般化の利点を組み合わせる。 テスト時間適応に関する総合的かつ体系的なレビューを行い、400以上の最近の論文を取り上げている。
論文 参考訳(メタデータ) (Wed, 06 Nov 2024 06:13:57 GMT) - Test-time adaptationのサーベイ、400以上の論文があるのに驚き。。
- リポジトリはGitHub – zzzx1224/Beyond-model-adaptation-at-test-time-Papers