- Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.2]
時系列予測は多くの実世界の力学系において重要な意味を持つ。 時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。 Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (Mon, 29 Jan 2024 06:27:53 GMT) - 時系列予測にLLMを活用していこうという報告。「TIME-LLM shows promise in adapting frozen large language models for time series forecasting by reprogramming time series data into text prototypes more natural for LLMs and providing natural language guidance via Prompt-as-Prefix to augment reasoning.」とのことだが、なんでこんなことができるんだろう。。。
- リポジトリはKimMeen/Time-LLM: [ICLR 2024] Official implementation of “Time-LLM: Time Series Forecasting by Reprogramming Large Language Models” (github.com)
投稿者: staka
GSSMs vs transformerとBlack Mamba
GSSM(Generalized State Space Models)とtransformerの比較とMoEなアプローチ。昨日のMambaのICL(In Context Learning)性能 – arXiv最新論文の紹介 (devneko.jp)の通り、特性はかなり違うのでMoEっぽく使うのはありなのかもしれない。
- Repeat After Me: Transformers are Better than State Space Models at Copying [57.4]
一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
論文 参考訳(メタデータ) (Thu, 1 Feb 2024 21:44:11 GMT) - シンプルな事例でのGSSMとtransformerの比較。当然なのかもだが「transformer models dramatically outperform state space models at copying and retrieving information from context.」
- BlackMamba: Mixture of Experts for State-Space Models [10.2]
状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。 MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。 我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
論文 参考訳(メタデータ) (Thu, 1 Feb 2024 07:15:58 GMT) - リポジトリはZyphra/BlackMamba: Code repository for Black Mamba (github.com)、モデルも公開されている Zyphra/BlackMamba-2.8B · Hugging Face
CodeComposeの進化
- Multi-line AI-assisted Code Authoring [10.2]
単行提案から複数行提案まで、プロダクトのスケール方法を紹介します。 LLMの提案は、開発者の既存のコードの周りを常に動き回っているので、マルチラインの提案がどのように”ジャリング”効果を持つのかについて議論する。 私たちは、マルチライン提案がユーザエクスペリエンスに与える影響を理解するために、10人のエンジニアで実験を行います。
論文 参考訳(メタデータ) (Tue, 6 Feb 2024 16:48:50 GMT) - Fugu-MT 論文翻訳(概要): CodeCompose: A Large-Scale Industrial Deployment of AI-assisted Code Authoring (fugumt.com) の強化、特にマルチラインの扱いに関する論文
- 様々な工夫も興味深いが「the significant net increase in percentage of keystrokes saved nearly doubling from 9% to 17%.」というのは結構有効そう。
Self-Discover
- Self-Discover: Large Language Models Self-Compose Reasoning Structures [136.5]
タスク固有の推論構造を自己発見するフレームワークであるSELF-DISCOVERを紹介する。 SELF-DISCOVERは、挑戦的推論ベンチマークにおいて、GPT-4とPaLM 2の性能を大幅に改善する。 自己発見推論構造は、モデルファミリー全体にわたって普遍的に適用可能であることを示す。
論文 参考訳(メタデータ) (Tue, 6 Feb 2024 01:13:53 GMT) - 各タスクでとるべき推論構造を自己判断させて問題を解く手法の提案、CoTなどと比べて高性能
- 他の手法と比べて整合的な比較になっているのかはやや疑問。(実用上は問題ない気もするが。)
MambaのICL(In Context Learning)性能
MambaのICL性能に関して論文が二つ出ていた。結局タスクによるっぽいという感じだろうか。。。少なくとも一定のICL能力があるのは間違いないように思える。一つ目のハイブリッドアーキテクチャの提案はありなのか、それだとMambaの良さが薄くなるのか悩ましいところではある。
- Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [26.2]
状態空間モデル(SSM)は言語モデリングにおけるトランスフォーマーネットワークの代替として提案されている。 本研究では,各種タスクを対象としたトランスフォーマーモデルに対して,マンバに着目したSSMのICL性能を評価する。 その結果、SSMは標準回帰ICLタスクにおいてトランスフォーマーと相容れない性能を示し、スパースパリティ学習のようなタスクでは優れていた。 これらの制約に対処するため、我々はMambaとアテンションブロックを組み合わせたハイブリッドモデルを導入し、個別に苦労するタスクにおいて個々のモデルを上回るようにした。
論文 参考訳(メタデータ) (Tue, 6 Feb 2024 18:56:35 GMT) - こちらは「Our results show that SSMs perform comparably to Transformers in standard regression ICL tasks, while outperforming them in tasks like sparse parity learning.However, SSMs fall short in tasks involving non-standard retrieval functionality.」とのことでタスクに依存という報告
- 上記を受けてMambaFormer というハイブリッドアーキテクチャを提案
- Is Mamba Capable of In-Context Learning? [68.3]
Mambaは、新しく提案された選択的な状態空間モデルである。 マムバは文脈内学習におけるトランスフォーマーモデルの性能と一致することを示す。
論文 参考訳(メタデータ) (Mon, 5 Feb 2024 16:39:12 GMT) - こちらは「Mamba matches the performance of transformer models for ICL.」との報告
- 「Mamba appears to solve ICL problems by incrementally refining its internal representations in a manner akin to an iterative optimization strategy, as transformer do.」という指摘も興味深い
Efficient Tool Use with Chain-of-Abstraction Reasoning
- Efficient Tool Use with Chain-of-Abstraction Reasoning [65.2]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。 マルチステップ推論問題におけるツールの実行には,微調整LLMエージェントの課題が残されている。 マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (Tue, 30 Jan 2024 21:53:30 GMT) - 変数を変数としてそのまま使えるような抽象化したChainを扱えるようLLMをfine tuning、そのモデルを使って実処理を別ツールとして切り出す手法の提案。
- 面白いし性能上がってそうだが評価するの難しそうな印象。
YOLO-World
- YOLO-World: Real-Time Open-Vocabulary Object Detection [87.1]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。 提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。 YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (Tue, 30 Jan 2024 18:59:38 GMT) - ゼロショット能力があるYOLO。YOLOらしく(?)動作速度が速い
- リポジトリはAILab-CVC/YOLO-World: Real-Time Open-Vocabulary Object Detection (github.com)
MM-LLMs: Recent Advances in MultiModal Large Language Models
- MM-LLMs: Recent Advances in MultiModal Large Language Models [51.5]
過去1年間で、MM-LLM(MultiModal Large Language Models)が大幅に進歩している。 MM-LLMのさらなる研究を促進するための総合的な調査を行う。
論文 参考訳(メタデータ) (Thu, 25 Jan 2024 03:46:15 GMT) - マルチモーダルLLMのサーベイ
- SOTA-LLM、ベンチマーク結果表などとてもありがたい、一方ですぐ情報がアップデートされるのだろうなとも。。。
- プロジェクトサイトはhttps://mm-llms.github.io/とのことだが現状404
AgentBoard
- AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [77.0]
大きな言語モデル(LLM)を評価することは、その能力を理解し、実践的なアプリケーションへの統合を促進するために不可欠である。 本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
論文 参考訳(メタデータ) (Wed, 24 Jan 2024 01:51:00 GMT) - LLMエージェントの分析的評価のためのフレームワーク
- 対象タスクは9つ。Embodied AI / AlfWorld, ScienceWorld, BabyAI、Game / Jericho, PDDL、Web / WebShop, WebArena、Tool / Tool-Query, Tool-Operation。論文で比べられているものの中ではGPT-4の性能が圧倒的。
- リポジトリはhkust-nlp/AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents (github.com)、リーダーボードはResult | AgentBoard: An Analytical Evaluation Board of Multi-Turn LLM Agents (hkust-nlp.github.io)
ACES: Translation Accuracy ChallengE Set
- Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets [92.4]
ACESは146の言語ペアにまたがる対照的な課題セットです。 このデータセットは、メトリクスが68の翻訳精度の誤差を識別できるかどうかを調べることを目的としている。 我々は、WMT2022および2023のメトリクス共有タスクに提出された50のメトリクスに対して、ACESをベンチマークすることで、大規模な研究を行う。
論文 参考訳(メタデータ) (Mon, 29 Jan 2024 17:17:42 GMT) - 機械翻訳に関する評価手法に対するベンチマーク。当然といえば当然だがBLEUのスコアが非常に低い。「we advise the reader not to draw any conclusions based solely on the ACES-Score」とは書かれているものの・・・。
- リポジトリはnikitam/ACES · Datasets at Hugging Face、ライセンスはCreative Commons Attribution Non-Commercial Share Alike 4.0 (cc-by-nc-sa-4.0)