コンテンツへスキップ
- SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning [63.2]
国連持続可能な開発目標の進展は、主要な環境・社会経済指標のデータ不足によって妨げられている。 近年の機械学習の進歩により、衛星やソーシャルメディアなど、豊富な、頻繁に更新され、グローバルに利用可能なデータを活用することが可能になった。 本稿では,7個のSDGにまたがる15個のベンチマークタスクの集合であるSustainBenchを紹介する。
論文 参考訳(メタデータ) (Mon, 8 Nov 2021 18:59:04 GMT)- SDGsに関連するタスクを集めたデータセット・ベンチマーク。Leaderboardもあり、非常に面白い取り組みだと思う。
- Poverty prediction over space
- Poverty prediction over time
- Weakly supervised cropland classification
- Crop type classification
- Crop type mapping
- Crop yield prediction
- Field delineation
- Child mortality rate
- Women BMI
- Women educational attainment
- Water quality index
- Sanitation index
- Brick kiln detection
- Representation learning for land cover
- Out-of-domain land cover classification
- BBC-Oxford British Sign Language Dataset [64.3]
我々は,British Sign Language (BSL) の大規模ビデオコレクションである BBC-Oxford British Sign Language (BOBSL) データセットを紹介する。 データセットのモチベーションと統計、利用可能なアノテーションについて説明する。 我々は、手話認識、手話アライメント、手話翻訳のタスクのベースラインを提供する実験を行う。
論文 参考訳(メタデータ) (Fri, 5 Nov 2021 17:35:58 GMT)- 2Kエピソード、1.5K時間、1.2Mセンテンスと大規模な手話データセット
- 大規模で有用なデータであると同時に、データの分析がしっかり行われているのもさすがだと思う。