コンテンツへスキップ
- How much do language models copy from their training data? Evaluating linguistic novelty in text generation using RAVEN [63.8]
現在の言語モデルは高品質なテキストを生成することができる。 彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか? 本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (Thu, 18 Nov 2021 04:07:09 GMT)- 新規に出てきたn-gramに注目しテキストの新規性を評価する手法RAVENを開発。言語モデルが生成したテキストは学習データのコピーではないか?という疑問は昔から持っていて興味深い内容。局所的な構造では新規性が低め、全体的な構造では新規性が高め、GPT-2を対象とした解析では意味的問題が散見されたとのこと。
- 非常に長い文を複製する(例外的な)事象がみられたとあり、この印象がコピーを行っている疑念につながっているのではないかと思う。
- コード等は公開予定とのこと。
- DataCLUE: A Benchmark Suite for Data-centric NLP [11.0]
データ中心のAIは、モデルパフォーマンスを改善するためにデータセットの品質を改善することを強調する。 NLPフィールドに適用された最初のData-CentricベンチマークであるDataCLUEを提案する。 我々は,人間のアノテーションを用いた総合的な実験を行い,DataCLUEの難しさを示す。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 17 Nov 2021 16:24:55 GMT) - ニューラル機械翻訳モデルと対訳データの品質 | ぷるーふおぶこんせぷと (staka.jp) でも記載した通り、ニューラル機械翻訳モデル構築においては対訳データの品質が非常に重要。FuguMTのデータを用いてデータ中心(データの品質向上技術を競う)ベンチマークを作りたいなと思わなくもない。
- Swin Transformer V2: Scaling Up Capacity and Resolution [45.5]
我々はSwin Transformerを最大30億のパラメータにスケーリングし、最大1,536×1,536解像度の画像でトレーニングできるようにする。 キャパシティと解像度をスケールアップすることで、Swin Transformerは4つの代表的なビジョンベンチマークに新しいレコードを設定する。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 18 Nov 2021 18:59:33 GMT)
- XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale [48.0]
XLS-Rはwav2vec 2.0に基づく言語間音声表現学習のための大規模モデルである。 128の言語で50万時間近く、最大2Bパラメータを持つモデルをトレーニングします。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 17 Nov 2021 18:49:42 GMT)