コンテンツへスキップ
- MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.9]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。 MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。 我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 4 Nov 2021 22:38:18 GMT)
- Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models [86.0]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。 GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。 テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 4 Nov 2021 12:59:55 GMT)- 敵対的攻撃環境下で動作させることを目的としたベンチマーク、データセットの提案。「攻撃アルゴリズムの多くが無効または曖昧な例を生成する → 慎重なフィルタリング処理を実施」「言語モデルとトレーニングメソッドはAdvGLUEではパフォーマンスが悪く、スコアは大きく劣化」という攻撃する側、される側ともに課題がありそうなのが興味深い。
- プロジェクトサイトはhttps://adversarialglue.github.io/
- CLUES: Few-Shot Learning Evaluation in Natural Language Understanding [81.6]
我々は,NLUモデルのFewショット学習能力を評価するためのベンチマークであるCLUESを紹介する。 近年のモデルでは,大量のラベル付きデータにアクセスすると人的パフォーマンスが向上するが,ほとんどのタスクにおいて数ショット設定では,パフォーマンスに大きなギャップが生じることが実証された。
論文 参考訳(メタデータ) (Thu, 4 Nov 2021 00:43:15 GMT)
- OpenPrompt: An Open-source Framework for Prompt-learning [59.2]
PLM上でのプロンプト学習を行うための統一的な使いやすさツールキットであるOpenPromptを提案する。 OpenPromptは、効率性、モジュール性、拡張性を備えた、リサーチフレンドリーなフレームワークである。
論文 参考訳(メタデータ) (Wed, 3 Nov 2021 03:31:14 GMT)