コンテンツへスキップ
- PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers [102.8]
本稿では、視覚変換器のBERT事前学習のためのより良いコードブックについて検討する。 対照的に、NLPフィールドの離散トークンは自然に非常に意味がある。 提案した知覚コードブックが生成する視覚的トークンは,より優れた意味を持つことを示す。
論文 参考訳(メタデータ) (Wed, 24 Nov 2021 18:59:58 GMT)
- PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer [55.9]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙な手がかりのマイニングに重点を置いている。 本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (Tue, 23 Nov 2021 18:57:11 GMT)
- Deep Probability Estimation [14.7]
深層ニューラルネットワークを用いた高次元データからの確率推定について検討する。 この研究の目的は、ディープニューラルネットワークを用いた高次元データからの確率推定を調査することである。 合成データおよび実世界の3つの確率推定タスクにおける既存手法の評価を行った。
論文 参考訳(メタデータ) (Sun, 21 Nov 2021 03:55:50 GMT)- (Deep Learningに限らず)通常はモデル出力は確率として使うことはできない。キャリブレーションする方法は様々提案されているが、ここでは学習時のloss関数を変更することで有望な結果を得ているとのこと。