Evaluating Cultural and Social Awareness of LLM Web Agents

  • Evaluating Cultural and Social Awareness of LLM Web Agents [113.5]
    CASAは,大規模言語モデルの文化的・社会的規範に対する感受性を評価するためのベンチマークである。 提案手法は,標準に違反するユーザクエリや観察を検知し,適切に応答するLLMエージェントの能力を評価する。 実験により、現在のLLMは非エージェント環境で大幅に性能が向上していることが示された。
    論文  参考訳(メタデータ)   (Wed, 30 Oct 2024 17:35:44 GMT)
  • 「(1) Can LLM agents detect and appropriately respond to user queries that violate cultural or social norms, such as searching for a wine gift in Iran, where it is culturally inappropriate?」というような文化的・社会的な面を考慮可能かを測るベンチマークの提案と検証。結果は「Specifically, LLMs perform considerably better in non-agent environments compared to web-based agent settings.」とやや驚き。
  • エージェント設計時の注意が必要なことが分かる。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です