- FETA: Towards Specializing Foundation Models for Expert Task Applications [49.6]
ファンデーションモデル(FM)は、ゼロショット学習、高忠実度データ合成、ドメインの一般化など、前例のない機能を示した。 この論文では、FMは、まだ専門家のタスクにおいて、出来の悪いパフォーマンスを保っていることを示します。 本稿では,FMに技術資料の理解を促すことを目的として,その第1のFETAベンチマークを提案する。
論文 参考訳(メタデータ) (Thu, 8 Sep 2022 08:47:57 GMT)- Text-to-Image (T21) と Image-to-Text (I2T) の検索を対象に、専門家のタスクとして多様な自動車サービスマニュアルと販売(IKEA年次カタログ)にフォーカスしたベンチマークの提案。CLIPやFLAVAなどの既存モデルでは難しい問題になっているとのこと。
- 論文中にデータのダウンロードリンクがある。