外部コーパスを併用することで言語モデルの性能を上げる試み。類似度で使う情報を得る事もできるが、REPLUG LSR (REPLUG with LM-Supervised Retrieval)はRetrieval部分を調整(学習)可能なモジュールとする。GPT, OPT, BLOOMといった超巨大な言語モデルを含めて性能が向上するとのこと。(当然かもだが)REPLUG LSRの方が性能が高そう。
検索系手法との併用は結構な確率で嘘を混ぜ込む現状に対しての現実解な気がする。ただ、この手法を用いてさえ「REPLUG lacks interpretability as it is unclear when the model relies on retrieved knowledge or parametric knowledge」と書かれている。