Language to Rewards for Robotic Skill Synthesis

  • Language to Rewards for Robotic Skill Synthesis [37.2]
    我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。 LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
    論文  参考訳(メタデータ)   (Wed, 14 Jun 2023 17:27:10 GMT)
  • LLMを人間とロボットの仲介役として使うため、人間の指示を報酬を示す関数(コード)に変換するアプローチを提案
  • リポジトリはLanguage to Rewards for Robotic Skill Synthesis (language-to-reward.github.io)

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です