Generating Adversarial Examples Robust to Round-Trip Translation

  • Lost In Translation: Generating Adversarial Examples Robust to Round-Trip Translation [66.3]
    本研究は, ラウンドトリップ翻訳における現在のテキスト対逆攻撃の堅牢性に関する包括的研究である。 筆者らは,現在最先端のテキストベースの6つの敵攻撃が,ラウンドトリップ翻訳後の有効性を維持していないことを実証した。 本稿では,機械翻訳を逆例生成のプロセスに組み込むことにより,この問題に対する介入に基づく解決策を提案する。
    論文  参考訳(メタデータ)   (Mon, 24 Jul 2023 04:29:43 GMT)
  • 多くのadversarial attacks 手法が機械翻訳システムを用いたラウンドトリップ翻訳(日→英→日のようにある言語を介して元の言語に戻す翻訳)下で有効性が減じるため、それを乗り越える手法を提案したとの報告。
  • 「We demonstrate that round trip translation can be used as a cheap and effective defence against current textual adversarial attacks.」というのは機械翻訳モデルを作っている側としては面白い話だが、「we find that round-trip translation defensive capabilities can be bypassed by our proposed attack-agnostic algorithm」というのにいたちごっこさ感じる。
  • リポジトリはGitHub – neelbhandari6/NMT_Text_Attack: This repository is the implementation of the paper ‘Lost In Translation’.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です