HtT: Hypotheses-to-Theories

  • Large Language Models can Learn Rules [111.7]
    大規模言語モデル(LLM)を用いた推論のためのルールライブラリを学習するフレームワークであるHtTを提案する。 数値的推論問題と関係的推論問題の両方の実験は、HtTが既存のプロンプト法を改善することを示している。 学習されたルールは、異なるモデルや同じ問題の異なる形式にも転送可能である。
    論文  参考訳(メタデータ)   (Tue, 10 Oct 2023 23:07:01 GMT)
  • LLMがルールを導出できるか調査した論文。ルール生成と検証を行うINDUCTION STAGE、ルールライブラリから適用するDEDUCTION STAGEを分けるアプローチで特にGPT-4について有望な結果でありCoTを上回る。
  • XAIにも有効なアプローチに見え興味深い。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です