- RoT: Enhancing Large Language Models with Reflection on Search Trees [39.6]
本稿では,木探索に基づくプロンプト手法の性能向上を目的としたLLMリフレクションフレームワークであるリフレクション・オン・サーチ・ツリー(RoT)について紹介する。 強力なLLMを使用して、以前の木探索経験からガイドラインを要約し、弱いLLMの能力を高める。 本稿では,RoTがより具体的で意味のあるガイドラインを生成するのを支援するために,歴史的検索プロセスから重要な情報を識別する新しい状態選択法を提案する。
論文 参考訳(メタデータ) (Mon, 08 Apr 2024 12:31:23 GMT) - x-of-thoughtのTではないが、類するものを改善するフレームワークの提案。面白く実用性はあるかもだが、公平な比較になってるのかはやや疑問。
- リポジトリはhuiwy/reflection-on-trees (github.com)