Better & Faster Large Language Models via Multi-token Prediction

  • Better & Faster Large Language Models via Multi-token Prediction [29.1]
    GPTやLlamaのような大規模言語モデルは、次のトーケン予測損失で訓練される。 複数の未来のトークンを同時に予測するための言語モデルをトレーニングすることで、より高いサンプル効率が得られることを提案する。
    論文  参考訳(メタデータ)   (Tue, 30 Apr 2024 17:33:57 GMT)
  • 正直アイデアとしてはよく聞く予測対象の複線化、「Our experiments (up to 7B parameters and 1T tokens) show that this is increasingly useful for larger models and in particular show strong improvements for code tasks.」とのこと。実験的に示したのは重要な成果であると思う。
  • 結果の解釈も参考になる。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です