Can Unconfident LLM Annotations Be Used for Confident Conclusions?
Can Unconfident LLM Annotations Be Used for Confident Conclusions? [34.2] 大規模言語モデル (LLMs) は、様々なタスクにおいて、人間と高い合意を示してきた。 信頼性駆動推論(Confidence-Driven Inference)は、LCMの信頼度インジケータを組み合わせて、どのアノテーションを収集すべきかを戦略的に選択する手法である。 論文参考訳(メタデータ) (Tue, 27 Aug 2024 17:03:18 GMT)
LLMと人間が手分けしてアノテーションをする状況下で、LLMのアノテーション及びLLMの信頼度を使って人間がやるべきアノテーションを選択する手法の提案。「We demonstrate the effectiveness of CONFIDENCE-DRIVEN INFERENCE over baselines in statistical estimation tasks across three CSS settings—text politeness, stance, and bias—reducing the needed number of human annotations by over 25% in each.」とのこと。