Contextualized Data-Wrangling Code Generation in Computational Notebooks

  • Contextualized Data-Wrangling Code Generation in Computational Notebooks [131.3]
    我々は、マルチモーダルなコンテキスト依存を明確にしたデータラングリングコード生成例をマイニングするために、CoCoMineという自動アプローチを提案する。 コンテクスト化されたデータラングリングコード生成のための58,221のサンプルを含むデータセットであるCoCoNoteをNotebooksで構築する。 実験結果は、データラングリングコード生成にデータコンテキストを組み込むことの重要性を示す。
    論文  参考訳(メタデータ)   (Fri, 20 Sep 2024 14:49:51 GMT)
  • 「Data wrangling involves cleaning, structuring, and enriching raw data into a desired format for further analysis [96], such as by removing duplicates, casting types, and extracting features [17].」のためのコード合成を目指したデータセット構築とそれを利用したDataCoderの提案。DataCoderのアーキテクチャが「Data Encoder」 + 「Code + Text Encoder」 +「 Decoder」という構成、よく見られるLLM baseなアーキテクチャでないことも興味深い。
  • リポジトリはGitHub – Jun-jie-Huang/CoCoNote: Source Code for ASE-24 paper “Contextualized Data-Wrangling Code Generation in Computational Notebooks”.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です