FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models

  • FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models [112.9]
    現在の方法では、ソース画像からアイデンティティとスタイルを抽出しようとする。 スタイル」は、テクスチャ、色、芸術的要素を含む広い概念であるが、照明や動力学など他の重要な要素をカバーしていない。 画像の美学を特定の視覚属性に分解するより効果的なアプローチを定式化し、ユーザーは異なる画像から照明、テクスチャ、ダイナミックスなどの特徴を適用できる。
    論文  参考訳(メタデータ)   (Tue, 10 Dec 2024 17:02:58 GMT)
  • 視覚的な属性(color, lighting, focus and depth of field, artistic stroke, dynamics, rhythm, designのような)を分類したデータセットfine-grained visual attributes dataset (FiVA)の提案と、画像から視覚属性の抽出・適用を行う fine-grained visual attribute adaptation framework (FiVA-Adapter)の提案。
  • プロジェクトサイトはFiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です