A Survey on Large Language Models for Automated Planning / Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [

  • A Survey on Large Language Models for Automated Planning [15.8]
    自動計画における大規模言語モデルの利用に関する既存の研究を批判的に調査する。 これらの制限のため、LCMは独立したプランナーとして機能するには適していないが、他のアプローチと組み合わせることで、計画アプリケーションを強化する大きな機会を提供する。
    論文  参考訳(メタデータ)   (Tue, 18 Feb 2025 02:11:03 GMT)
  • LLMを用いた自動計画に関するサーベイ
  • エージェントでは必須の能力であるが、このテーマでのサーベイは貴重
  • Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [11.5]
    大規模言語モデル(LLM)は、最近、推論、計画、意思決定において顕著な能力を示した。 研究者はLLMをマルチエージェントシステムに組み込んで、単一エージェント設定の範囲を超えてタスクに取り組むようになった。 この調査はさらなるイノベーションの触媒として機能し、より堅牢でスケーラブルでインテリジェントなマルチエージェントシステムを促進する。
    論文  参考訳(メタデータ)   (Thu, 20 Feb 2025 07:18:34 GMT)
  • マルチエージェント、コミュニケーションに軸足を置いたサーベイ。

From Selection to Generation: A Survey of LLM-based Active Learning

  • From Selection to Generation: A Survey of LLM-based Active Learning [153.8]
    大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。 本調査は,LLMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
    論文  参考訳(メタデータ)   (Mon, 17 Feb 2025 12:58:17 GMT)
  • LLM時代のアクティブラーニング。「In this survey, we present an intuitive taxonomy of LLM-based Active Learning, detailing how LLMs can act as sample selectors, data generators, and annotators within the AL loop.」という整理。

Logical Reasoning in Large Language Models: A Survey

  • Logical Reasoning in Large Language Models: A Survey [17.1]
    大規模言語モデル(LLM)における論理的推論の最近の進歩を合成する。 LLMにおける論理的推論の範囲、理論的基礎、および推論の習熟度を評価するために使用されるベンチマークについて概説する。 このレビューは、AIシステムにおける論理的推論を強化するためのさらなる調査の必要性を強調し、今後の方向性を結論付けている。
    論文  参考訳(メタデータ)   (Thu, 13 Feb 2025 09:19:14 GMT)
  • 「This survey synthesizes the rapid advancements and persistent challenges in logical reasoning for large language models (LLMs).」と、急速に発展しているLLMにおける論理的推論に関するサーベイ

A Survey on Data-Centric AI: Tabular Learning from Reinforcement Learning and Generative AI Perspective 

  • A Survey on Data-Centric AI: Tabular Learning from Reinforcement Learning and Generative AI Perspective [23.3]
    タブラルデータ(Tabular data)は、バイオインフォマティクス、医療、マーケティングなど、さまざまな領域で広く使われているデータフォーマットの1つである。 本調査では,データ空間を精製するための基本技術として,強化学習(RL)と特徴選択と特徴生成のための生成的アプローチについて検討する。 我々は,既存の課題を要約し,今後の研究の方向性について論じ,この分野の継続的なイノベーションを促進する洞察を提供することを目的とする。
    論文  参考訳(メタデータ)   (Wed, 12 Feb 2025 22:34:50 GMT)
  • 「Tabular data-centric AI is evolving with RL-based optimization and generative modeling playing a key role in feature engineering.」とのこと。現状でも重要性が下がっていないテーブルデータに対してRL系の最適化や生成AI活用などをサーベイした論文。

不均衡データに対するサーベイも出ていた。こちらも過去から重要な視点。

  • A Comprehensive Survey on Imbalanced Data Learning [45.3]
    不均衡なデータは、さまざまな種類の生データに広まっており、機械学習のパフォーマンスを妨げる。 本調査は,様々な実世界のデータ形式を体系的に分析する。 さまざまなデータフォーマットに関する既存の研究は、データ再バランス、特徴表現、トレーニング戦略、アンサンブル学習の4つのカテゴリにまとめられている。
    論文  参考訳(メタデータ)   (Thu, 13 Feb 2025 04:53:17 GMT)

Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey

  • Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.4]
    Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。 RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。 RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
    論文  参考訳(メタデータ)   (Sat, 08 Feb 2025 06:50:47 GMT)
  • RAG、Trustworthyのサーベイ。実用上様々な考慮点があるとはいえ、この観点でサーベイが必要な状況に若干驚き。
  • リポジトリはGitHub – Arstanley/Awesome-Trustworthy-Retrieval-Augmented-Generation、論文リストが公開されている。

Generative AI and Creative Work: Narratives, Values, and Impacts 

  • Generative AI and Creative Work: Narratives, Values, and Impacts [37.2]
    私たちは、オンラインメディアをレビューし、彼らが伝達するクリエイティブな仕事に対するAIの影響に関する支配的な物語を分析します。 この談話は、人的労働を通じて物質的実現から解放された創造性を促進する。 この言説は、支配的なテクノ実証主義のビジョンに対応し、創造的経済と文化に対する権力を主張する傾向にある。
    論文  参考訳(メタデータ)   (Thu, 06 Feb 2025 10:26:56 GMT)
  • 「In this article, we review online media outlets and analyze the dominant narratives around AI’s impact on creative work that they convey.」
  • 参入障壁の低下が良いことなのか、アイデアと実行でアイデアの重要性(比率)が上がるのは好ましいのか、などは人によって考え方が異なるとはいえ、テクノロジーの普及は止められない。。それはそれとして「For example, we believe that five years ago, narratives of generative AI in art emphasized the replacement of artists by technology, whereas current narratives focus more on augmentation and collaboration.」は本当なんだろうか・・・という疑問も。

A Survey of Sample-Efficient Deep Learning for Change Detection in Remote Sensing: Tasks, Strategies, and Challenges

  • A Survey of Sample-Efficient Deep Learning for Change Detection in Remote Sensing: Tasks, Strategies, and Challenges [46.6]
    深層学習(DL)の急速な発展により,大量のリモートセンシング画像(RSI)上で,自動的かつ高精度かつ堅牢な変化検出(CD)が可能になった。 CD手法の進歩にもかかわらず、実際の文脈における実践的応用は、多様な入力データと応用コンテキストのために制限されている。 本稿では,様々なCDタスクに関する文献的手法と,サンプル限定シナリオでDLベースのCDメソッドをトレーニングおよびデプロイするための戦略とテクニックを要約する。
    論文  参考訳(メタデータ)   (Wed, 05 Feb 2025 02:36:09 GMT)
  • 「this article summarizes the literature methods for different CD tasks and the available strategies and techniques to train and deploy DL-based CD methods in sample-limited scenarios.」というサーベイ(CD=Change Detection)

A Survey on Memory-Efficient Large-Scale Model Training in AI for Science 

  • A Survey on Memory-Efficient Large-Scale Model Training in AI for Science [20.3]
    この調査は、生物学、医学、化学、気象学などの科学分野にまたがる応用をレビューする。 本稿では,変圧器アーキテクチャに基づく大規模言語モデル(LLM)のメモリ効率トレーニング手法について概説する。 予測精度を保ちながら,メモリ最適化手法がストレージ需要を削減できることを実証する。
    論文  参考訳(メタデータ)   (Tue, 21 Jan 2025 03:06:30 GMT)
  • 科学への応用にフォーカスしたMemory Efficientなモデルのサーベイ
  • 「Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy.」という内容も。

A Survey of World Models for Autonomous Driving

  • A Survey of World Models for Autonomous Driving [63.3]
    自動運転車の最近のブレークスルーは、車両が周囲を知覚し、相互作用する方法に革命をもたらした。 世界モデルは、マルチセンサーデータ、セマンティックキュー、時間ダイナミクスを統合する駆動環境の高忠実度表現を提供する。 これらの世界モデルは、より堅牢で信頼性があり、適応可能な自動運転ソリューションの道を開いた。
    論文  参考訳(メタデータ)   (Mon, 20 Jan 2025 04:00:02 GMT)
  • 自動運転にフォーカスしたWorld modelのサーベイ。

Generative Physical AI in Vision: A Survey