Improved Fine-tuning by Leveraging Pre-training Data: Theory and Practice [52.1] 対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。 近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。 本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。 論文参考訳(メタデータ)参考訳(全文) (Wed, 24 Nov 2021 06:18:32 GMT)
近しいデータ(鳥画像分類データセットであるCUBにImageNetの鳥類を加えるなど)をfine tuningで使用すると最終性能を上げられることがある。ラベルがあればそれを利用すればよいが、ラベルがない場合は対象データに近いデータセット(サブセット)を選択する必要がある。この論文ではこの問題をunbalanced optimal transport (UOT) 問題として解く手法を提案、効果を検証している。