Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models [53.0] 生成した画像とトレーニングサンプルを比較し、コンテンツが複製されたことを検知する画像検索フレームワークについて検討する。 フレームワークをCeleb-A、ImageNet、LAIONなど複数のデータセットでトレーニングされた拡散モデルに適用することにより、トレーニングセットのサイズがコンテンツ複製にどのように影響するかを議論する。 論文参考訳(メタデータ) (Thu, 8 Dec 2022 18:59:30 GMT)
論文中には「Furthermore, it is highly likely that replication exists that our retrieval method is unable to identify.」との記載もあり、生成モデルがバズった中で言われていた懸念は現実的なリスクのよう。