- Learning to Predict Visual Attributes in the Wild [43.9]
260K以上のオブジェクトインスタンスに対して,927K以上の属性アノテーションからなる大規模なウィジェット内属性予測データセットを導入する。 本稿では,低レベルCNN機能と高レベルCNN機能の両方を利用するベースモデルを含む,これらの課題に体系的に対処する手法を提案する。 これらの技術を用いることで,現状よりも3.7mAP,5.7ポイントのF1点が向上した。
論文 参考訳(メタデータ) (Thu, 17 Jun 2021 17:58:02 GMT)- 大規模な画像系データセット。VAWは現実的な属性予測だけでなく「限られたラベル」「データの不均衡」「アウトオブディストリビューションなテスト」「バイアス関連の問題」などを含むロングテールなマルチラベル予測タスクの汎用テストとしても重要なベンチマークとして機能すると考えている。とのこと。
- http://vawdataset.com/ にデータ等が存在