Extracting Training Data from Diffusion Models Extracting Training Data from Diffusion Models [77.1]拡散モデルはトレーニングデータから個々の画像を記憶し,生成時に出力することを示す。 生成とフィルタのパイプラインを用いて、最先端のモデルから数千以上のトレーニング例を抽出する。 さまざまな設定で何百もの拡散モデルをトレーニングし、モデリングとデータ決定の違いがプライバシに与える影響を分析する。論文 参考訳(メタデータ) (Mon, 30 Jan 2023 18:53:09 GMT) Diffusionモデルは絵を生成している?複製している? – arXiv最新論文の紹介 (devneko.jp)と近しい話題で画像を記憶し元データと非常に近い画像を出力することがあるとの報告。「We see that state-of-the-art diffusion models memorize 2× more than comparable GANs」と記載があり、GANより深刻とのこと。 人間でも似たようなことはある…という話はあるものの社会実装では対策が必要だと思う。(元画像に近いかどうかというものだが、著作権や商標を侵害しなけない出力への対応も必要)