ControlNet、MultiDiffusion

単純にテキストから画像を生成するのではなく、その構図等を制御可能な研究報告が出ていた。何ができているかはサンプルを見るのが早い。欲しい絵があった場合、その描き方が根底から変わりそうな…

  • Adding Conditional Control to Text-to-Image Diffusion Models [43.8]
    本研究では,事前学習した大規模拡散モデルを制御するニューラルネットワーク構造であるControlNetを提案する。 ControlNetは、エンドツーエンドでタスク固有の条件を学習し、トレーニングデータセットが小さい場合でも、学習は堅牢である。
    論文  参考訳(メタデータ)   (Fri, 10 Feb 2023 23:12:37 GMT)
  • リポジトリはGitHub – lllyasviel/ControlNet: Let us control diffusion models

  • MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation [34.6]
    MultiDiffusionは、汎用的で制御可能な画像生成を可能にする統一されたフレームワークである。 高品質で多様な画像を生成するために,MultiDiffusionが容易に適用可能であることを示す。
    論文  参考訳(メタデータ)   (Thu, 16 Feb 2023 06:28:29 GMT)
  • 制御可能な(マスクごとにテキストを設定することなどが可能な)画像生成モデルの提案
  • リポジトリはMultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です