BitFit(Bias-terms Fine-tuning ): BERTのごく一部のfine tuning

  • BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models [51.5]
    我々は、事前訓練されたBERTモデルのバイアス項(またはバイアス項のサブセット)のみを微調整することは、モデル全体を微調整する(そして、時にはそれよりも優れている)ことを示す。 ファインチューニングは、新しいタスク固有の言語知識を学ぶのではなく、言語モデリングの訓練によって引き起こされる知識を明らかにすることであるという仮説を支持している。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 18 Jun 2021 16:09:21 GMT)
    • バイアス項とタスク固有の分類層のみ、BERTの極一部(0.1%以下)を変更対象としてもベンチマークで十分な性能を出すfine tuningが可能という報告。処理の効率化という点でも重要なものだが、この程度の変更で様々なタスクに対応できるのは直感に反しており非常に興味深い。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です