コンテンツへスキップ
- SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore [125.1]
推論中にこのリスクパフォーマンストレードオフを管理する新しい言語モデルであるSILOを提案する。 SILOは(1)オープンライセンスコーパス(OLC)上でパラメトリックLMをトレーニングすることで構築されます。 データストアへのアクセスはドメインのパフォーマンスを大幅に改善し、PileでトレーニングされたLMでパフォーマンスギャップの90%を閉じる。
論文 参考訳(メタデータ) (Tue, 8 Aug 2023 17:58:15 GMT)
- 著作権違反リスクの少ないOPEN LICENSE CORPUS (OLC)を用いてLLMを構築、そうでないデータセットと組み合わせて一定の性能が出るフレームワークの提案。リスクの低いデータと高いデータを分離できることが特徴的。
- 興味深い考え方であると同時に、 kNN-LMがRIC-LMより効果的なのが意外だった。諸条件でも変わるかもしれないが、機械翻訳用途だとシンプルにkNN-LM的な方針でLLMと併用した方がよかったりするんだろうか。
- リポジトリはGitHub – kernelmachine/silo-lm: Silo Language Models code repository